cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382854 Decimal expansion of (1-log(2))/2.

Original entry on oeis.org

1, 5, 3, 4, 2, 6, 4, 0, 9, 7, 2, 0, 0, 2, 7, 3, 4, 5, 2, 9, 1, 3, 8, 3, 9, 3, 9, 2, 7, 0, 9, 1, 1, 7, 1, 5, 9, 6, 2, 2, 4, 9, 9, 3, 2, 8, 1, 9, 8, 7, 2, 3, 7, 2, 9, 3, 9, 6, 5, 9, 9, 9, 5, 2, 5, 3, 3, 0, 3, 1, 8, 9, 0, 1, 5, 1, 5, 2, 6, 4, 2, 1, 9, 7, 0, 6, 8
Offset: 0

Views

Author

Sean A. Irvine, Apr 06 2025

Keywords

Examples

			0.15342640972002734529138393927091171596224993281987...
		

References

  • Hari M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. See eq. (493), p. 313.

Crossrefs

Programs

  • Maple
    evalf[140]((1-log(2))/2);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    First[RealDigits[(1 - Log[2])/2, 10, 100]] (* Paolo Xausa, Apr 07 2025 *)
  • PARI
    (1-log(2))/2 \\ Amiram Eldar, Aug 01 2025

Formula

Equals Sum_{k>=1} (-1)^(k+1) / ((2*k-1) * 2*k * (2*k+1)).
Equals Sum_{k>=1} zeta(2*k)/((2*k+1)*4^k) (Srivastava and Choi, 2012). - Amiram Eldar, Aug 01 2025