A382854 Decimal expansion of (1-log(2))/2.
1, 5, 3, 4, 2, 6, 4, 0, 9, 7, 2, 0, 0, 2, 7, 3, 4, 5, 2, 9, 1, 3, 8, 3, 9, 3, 9, 2, 7, 0, 9, 1, 1, 7, 1, 5, 9, 6, 2, 2, 4, 9, 9, 3, 2, 8, 1, 9, 8, 7, 2, 3, 7, 2, 9, 3, 9, 6, 5, 9, 9, 9, 5, 2, 5, 3, 3, 0, 3, 1, 8, 9, 0, 1, 5, 1, 5, 2, 6, 4, 2, 1, 9, 7, 0, 6, 8
Offset: 0
Examples
0.15342640972002734529138393927091171596224993281987...
References
- Hari M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. See eq. (493), p. 313.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- I. S. Gradsteyn and I. M. Ryzhik, Table of integrals, series and products (6th ed.), 2000, (eq. 0.238.2).
Programs
-
Maple
evalf[140]((1-log(2))/2); # Alois P. Heinz, Apr 07 2025
-
Mathematica
First[RealDigits[(1 - Log[2])/2, 10, 100]] (* Paolo Xausa, Apr 07 2025 *)
-
PARI
(1-log(2))/2 \\ Amiram Eldar, Aug 01 2025
Formula
Equals Sum_{k>=1} (-1)^(k+1) / ((2*k-1) * 2*k * (2*k+1)).
Equals Sum_{k>=1} zeta(2*k)/((2*k+1)*4^k) (Srivastava and Choi, 2012). - Amiram Eldar, Aug 01 2025