cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122221 Largest number k such that k! < (n!)^n.

Original entry on oeis.org

2, 5, 8, 13, 19, 25, 32, 41, 50, 60, 72, 84, 97, 111, 126, 142, 159, 177, 196, 216, 237, 259, 282, 306, 330, 356, 383, 410, 439, 469, 499, 531, 563, 597, 631, 667, 703, 740, 779, 818, 858, 899, 942, 985, 1029, 1074, 1120, 1167, 1215, 1264, 1314, 1365, 1417
Offset: 2

Views

Author

Hugo Pfoertner, Sep 25 2006

Keywords

Examples

			a(3)=5 because 5! = 120 is less than (3!)^3 = 216 whereas 6! = 720 > 216.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local b: b:=proc(k) if k!<(n!)^n then k else fi end: max(seq(b(k),k=1..2200)) end: seq(a(n),n=2..67); # Emeric Deutsch, Oct 07 2006
  • Mathematica
    s={};Do[k=1;Until[k!>=(n!)^n,k++]; AppendTo[s,k-1],{n,2,54}];s (* James C. McMahon, Oct 26 2024 *)

Formula

From Stirling's approximation, a(n) ~ n^2/2. A closer approximation for a(n) is n^2/2-c*n^2/log(n), where c = (1+log(0.5))/4 = A382854/2. - Johann Peters, Aug 23 2025

Extensions

More terms from Emeric Deutsch, Oct 07 2006

A382884 Decimal expansion of 1/6 + Pi/(12*sqrt(3)) - log(3)/4.

Original entry on oeis.org

0, 4, 3, 1, 6, 3, 5, 4, 1, 5, 1, 9, 1, 5, 7, 3, 9, 8, 0, 3, 4, 0, 2, 8, 5, 4, 5, 5, 7, 2, 8, 8, 1, 5, 5, 1, 5, 2, 8, 4, 6, 6, 2, 1, 4, 5, 5, 2, 0, 4, 1, 0, 1, 8, 3, 6, 3, 8, 1, 6, 8, 2, 7, 8, 7, 2, 9, 7, 0, 0, 2, 5, 1, 2, 2, 5, 4, 3, 9, 1, 5, 2, 5, 5, 2, 7, 3
Offset: 0

Views

Author

Sean A. Irvine, Apr 07 2025

Keywords

Examples

			0.04316354151915739803402854557288155...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(6 + Pi*Sqrt[3] - 9*Log[3])/36, 10, 100, -1]] (* Paolo Xausa, Apr 08 2025 *)

Formula

Equals Sum_{k>=0} 1/((3*k+1) * (3*k+2) * (3*k+3) * (3*k+4)).

A385647 Decimal expansion of 1 - log(2)/2.

Original entry on oeis.org

6, 5, 3, 4, 2, 6, 4, 0, 9, 7, 2, 0, 0, 2, 7, 3, 4, 5, 2, 9, 1, 3, 8, 3, 9, 3, 9, 2, 7, 0, 9, 1, 1, 7, 1, 5, 9, 6, 2, 2, 4, 9, 9, 3, 2, 8, 1, 9, 8, 7, 2, 3, 7, 2, 9, 3, 9, 6, 5, 9, 9, 9, 5, 2, 5, 3, 3, 0, 3, 1, 8, 9, 0, 1, 5, 1, 5, 2, 6, 4, 2, 1, 9, 7, 0, 6, 8, 3, 3, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 06 2025

Keywords

Comments

Probability that floor(x/y) is even for x, y chosen randomly in (0,1).

Examples

			0.65342640972002734529138393927091171596224993281987...
		

Crossrefs

Essentially the same as A382854.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); [1 - Log(2)/2]; // Vincenzo Librandi, Jul 07 2025
  • Mathematica
    First[RealDigits[1 - Log[2]/2, 10, 100]]

Formula

Equals 1 - A002162/2.
Showing 1-3 of 3 results.