A382910 a(n) = A003266(n)^2.
1, 1, 1, 4, 36, 900, 57600, 9734400, 4292870400, 4962558182400, 15011738501760000, 118907980672440960000, 2465675887223735746560000, 133859078241489389944995840000, 19025256931384645503492313743360000, 7079298104168226591849489943904256000000, 6896432754839457130755425769163265163264000000
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..70
- Richard Duckworth and Fabian Stedman, Tintinnalogia, or, the Art of Ringing, (1671). Released by Project Gutenberg, 2006.
- Burkard Polster and Marty Ross, Ringing the changes, (2009).
- Wikipedia, Method ringing.
- Index entries for sequences related to bell ringing.
Programs
-
Maple
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1)*(<<0|1>, <1|1>>^n)[1, 2]^2) end: seq(a(n), n=0..16); # Alois P. Heinz, Apr 14 2025
-
Mathematica
k = 1; {1, 1}~Join~Reap[Do[k *= Fibonacci[n]; Sow[k^2], {n, 16}] ][[-1, 1]] (* Michael De Vlieger, Apr 14 2025 *)
Formula
a(n) = Product_{j=1..n} Fibonacci(j)^2.
a(0) = 1; a(n) = a(n-1)*A007598(n). - Hugo Pfoertner, Apr 13 2025
a(n) ~ c^2 * phi^(n*(n+1)) / 5^n where phi is the golden ratio (A001622) and c = A062073. - Amiram Eldar, Aug 18 2025
Comments