cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Edwin Hermann

Edwin Hermann's wiki page.

Edwin Hermann has authored 14 sequences. Here are the ten most recent ones:

A384759 Number of legal arrangements in pawn-only chess on an n X n board where no pieces have been taken and no piece attacks another piece.

Original entry on oeis.org

0, 3, 2031, 728174, 247646098, 91880342535, 38818192375310, 18907485764545412, 10626953883068264472, 6866760686250915376779, 5073038373153476636807709, 4259014676256866422905669602, 4038463837000965678262091166880, 4299625631242136963071149921577615, 5111407212497576694797045579672852791
Offset: 4

Author

Edwin Hermann, Jun 09 2025

Keywords

Comments

The number of ways of arranging n pawns of each color on an n X n board such that no pawn threatens another, each file contains one pawn of each color, none of the pawns are passed pawns, and each pawn is placed between row 2 and row n-1 inclusive.
There is no requirement that the arrangements counted here can actually be achieved via a sequence of legal chess moves.

Examples

			The a(5) = 3 positions are:
  . . . . .    . . . . .    . . . . .
  b b b b b    . b . b .    b . b . b
  . . . . .    b w b w b    w b w b w
  w w w w w    w . w . w    . w . w .
  . . . . .    . . . . .    . . . . .
		

Crossrefs

Programs

  • PARI
    MkTfrMtx(n)={my(m=binomial(n,2), M=matrix(m,m)); for(i=1,n-1, for(j=i+1,n, for(p=1,n-1, for(q=p+1,n, if(q<>i+1&&j<>p+1, M[binomial(n-i,2)+(j-i), binomial(n-p,2)+(q-p)]=1) )))); M}
    a(n)={my(M=MkTfrMtx(n-2)); vecsum(M^(n-1)*vectorv(#M,i,1))} \\ Andrew Howroyd, Jun 15 2025

Extensions

a(9) onwards from Andrew Howroyd, Jun 15 2025

A383200 Number of positive integers with n digits in which adjacent digits differ by at most 5.

Original entry on oeis.org

9, 74, 610, 5020, 41317, 340050, 2798709, 23034169, 189577752, 1560278726, 12841536934, 105689495131, 869854553902, 7159149960981, 58921836913893, 484943447787706, 3991222267830858, 32848892512931768, 270355712339865433, 2225104276073281126, 18313239977617203949
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(2*x^4-x^3-9*x^2+2*x+9)/((x+1)*(2*x^4-3*x^3-6*x^2+9*x-1)),{x,0,21}],x]] (* or *) LinearRecurrence[{8,3,-9,-1,2},{9,74,610,5020,41317},21] (* James C. McMahon, May 08 2025 *)

Formula

G.f.: -x*(2*x^4-x^3-9*x^2+2*x+9)/((x+1)*(2*x^4-3*x^3-6*x^2+9*x-1)). - Alois P. Heinz, Apr 26 2025

Extensions

a(11)-a(21) from Alois P. Heinz, Apr 26 2025

A383202 Number of positive integers with n digits in which adjacent digits differ by at most 7.

Original entry on oeis.org

9, 86, 813, 7693, 72786, 688661, 6515721, 61648078, 583279341, 5518660133, 52214449434, 494023669525, 4674173312097, 44224391459894, 418426247682381, 3958913146568317, 37457003208767394, 354397037125653845, 3353104871295311673, 31725187008033469918
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(6*x^2-5*x-9)/(6*x^3-5*x^2-9*x+1),{x,0,20}],x]] (* or *) LinearRecurrence[{9,5,-6},{9,86,813},20] (* James C. McMahon, May 07 2025 *)

Formula

G.f.: -x*(6*x^2-5*x-9)/(6*x^3-5*x^2-9*x+1). - Alois P. Heinz, Apr 26 2025

Extensions

a(11)-a(20) from Alois P. Heinz, Apr 26 2025

A383201 Number of positive integers with n digits in which adjacent digits differ by at most 6.

Original entry on oeis.org

9, 81, 724, 6472, 57851, 517112, 4622299, 41317257, 369321783, 3301249634, 29508817638, 263769909867, 2357755102376, 21075220921085, 188384678470177, 1683910560899833, 15051939468415328, 134544486519385896, 1202650255852445247, 10750107085908359068
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Formula

G.f.: -x*(4*x^3+5*x^2-9*x-9)/(4*x^4+5*x^3-9*x^2-8*x+1). - Alois P. Heinz, Apr 26 2025

Extensions

a(11)-a(20) from Alois P. Heinz, Apr 26 2025

A383198 Number of positive integers with n digits in which adjacent digits differ by at most 3.

Original entry on oeis.org

9, 54, 328, 2000, 12202, 74458, 454366, 2772710, 16920138, 103253214, 630091042, 3845059318, 23464039746, 143186649814, 873780342786, 5332145758694, 32538816680050, 198564450196598, 1211717109125762, 7394366670845606, 45123286657530514, 275359755529253142
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Programs

  • Mathematica
    LinearRecurrence[{7,-4,-10,6},{9, 54, 328, 2000},22] (* or *) Rest[CoefficientList[Series[(-x*(10*x^3-14*x^2-9*x+9)/(6*x^4-10*x^3-4*x^2+7*x-1)),{x,0,22}],x]] (* James C. McMahon, May 01 2025 *)

Formula

G.f.: -x*(10*x^3-14*x^2-9*x+9)/(6*x^4-10*x^3-4*x^2+7*x-1). - Alois P. Heinz, Apr 23 2025

Extensions

More terms from Alois P. Heinz, Apr 23 2025

A383199 Number of positive integers with n digits in which adjacent digits differ by at most 4.

Original entry on oeis.org

9, 65, 475, 3465, 25282, 184463, 1345887, 9819916, 71648478, 522764591, 3814216651, 27829445433, 203050351876, 1481504383412, 10809413614854, 78868091114176, 575440631436879, 4198553757680021, 30633661742154286, 223510591001999469, 1630787227154056312
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^4-x^3-7*x^2+2*x+9)/(x^5-x^4-6*x^3+3*x^2+7*x-1),{x,0,21}],x]] (* or *) LinearRecurrence[{7,3,-6,-1,1},{9,65,475,3465,25282},21] (* James C. McMahon, May 01 2025 *)

Formula

G.f.: -x*(x^4-x^3-7*x^2+2*x+9)/(x^5-x^4-6*x^3+3*x^2+7*x-1). - Alois P. Heinz, Apr 23 2025

Extensions

More terms from Alois P. Heinz, Apr 23 2025

A383197 Number of positive integers with n digits in which adjacent digits differ by at most 2.

Original entry on oeis.org

9, 41, 188, 867, 4010, 18574, 86096, 399225, 1851529, 8587802, 39833891, 184770640, 857073208, 3975623218, 18441391129, 85542653145, 396800342804, 1840608838251, 8537899488042, 39604141848678, 183708898915088, 852157340908409, 3952841397780937, 18335763176322738
Offset: 1

Author

Edwin Hermann, Apr 19 2025

Keywords

Formula

G.f.: -x*(2*x^3-22*x+9)/(x^4-11*x^2+7*x-1). - Alois P. Heinz, Apr 21 2025

Extensions

a(15)-a(24) from Alois P. Heinz, Apr 21 2025

A383079 Number of n-digit positive integers where all pairs of consecutive digits have a difference of at least 7.

Original entry on oeis.org

9, 9, 22, 48, 109, 244, 549, 1233, 2771, 6226, 13990, 31435, 70634, 158713, 356625, 801329, 1800570, 4045844, 9090929, 20427132, 45899349, 103134901, 231742019, 520719590, 1170046298, 2629070167, 5907467042, 13273957953, 29826312781, 67019116473, 150590587774
Offset: 1

Author

Edwin Hermann, Apr 15 2025

Keywords

Formula

G.f.: x*(4*x^3-5*x^2-9*x+9)/(x^3-x^2-2*x+1). - Alois P. Heinz, Apr 15 2025

Extensions

More terms from Alois P. Heinz, Apr 15 2025

A383078 Number of n-digit positive integers where all pairs of consecutive digits have a difference of at least 6.

Original entry on oeis.org

9, 16, 50, 140, 407, 1168, 3367, 9691, 27908, 80354, 231374, 666211, 1918282, 5523469, 15904199, 45794312, 131859470, 379674208, 1093228315, 3147825472, 9063802211, 26098178315, 75146709476, 216376326214, 623030800330, 1793945691511, 5165460748322, 14873351444633
Offset: 1

Author

Edwin Hermann, Apr 15 2025

Keywords

Crossrefs

Formula

G.f.: x*(2*x^4+x^3-9*x^2-2*x+9)/((x+1)*(x^3-3*x+1)). - Alois P. Heinz, Apr 15 2025

Extensions

More terms from Alois P. Heinz, Apr 15 2025

A383077 Number of n-digit positive integers where all pairs of consecutive digits have a difference of at least 5.

Original entry on oeis.org

9, 25, 95, 325, 1152, 4035, 14191, 49840, 175126, 615251, 2161615, 7594445, 26681890, 93742420, 329348786, 1157113228, 4065328917, 14282870761, 50180539756, 176301151441, 619405374858, 2176179878029, 7645653483902, 26861757974676, 94374410640201, 331569117405852
Offset: 1

Author

Edwin Hermann, Apr 15 2025

Keywords

Crossrefs

Formula

G.f.: -x*(x^4+x^3-7*x^2-2*x+9)/(x^5-x^4-4*x^3+3*x^2+3*x-1). - Alois P. Heinz, Apr 15 2025

Extensions

More terms from Alois P. Heinz, Apr 15 2025