cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382991 Number of compositions of n such that any part 1 at position k can be k different colors.

Original entry on oeis.org

1, 1, 3, 10, 40, 193, 1110, 7473, 57821, 505945, 4940354, 53248874, 627848885, 8037734930, 111017325473, 1645384681765, 26044845197881, 438499277779636, 7824114643731522, 147476551001255125, 2928074880767254238, 61078483577649288463, 1335438738400978511877
Offset: 0

Views

Author

John Tyler Rascoe, Apr 11 2025

Keywords

Examples

			a(3) = 10 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_a,1_a,1_a), (1_a,1_a,1_b), (1_a,1_a,1_c), (1_a,1_b,1_a), (1_a,1_b,1_b), (1_a,1_b,1_c).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(b(n-j, i+1)*`if`(j=1, i, 1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+ sum(i=1,N, prod(j=1,i, j*x + x^2/(1-x))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{i>0} Product_{j=1..i} ( j*x + x^2/(1-x) ).

A383101 Number of compositions of n such that any part 1 can be m different colors where m is the largest part of the composition.

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 294, 1178, 4978, 22191, 104146, 513385, 2653003, 14349804, 81125023, 478686413, 2943737942, 18838530436, 125268429098, 864256288435, 6177766228172, 45689641883377, 349173454108407, 2754058599745239, 22393206702946457, 187501022603071090
Offset: 0

Views

Author

John Tyler Rascoe, Apr 16 2025

Keywords

Examples

			a(3) = 6 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_b,2), (1_a,1_a,1_a).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, m) option remember; binomial(n+p, n)*
          m^n+add(b(n-j, p+1, max(m, j)), j=2..n)
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 23 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(m=1,N, x^m/((1-m*x-(x^2-x^m)/(1-x))*(1-m*x-(x^2-x^(m+1))/(1-x)))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{m>0} x^m/((1 - m*x - (x^2 - x^m)/(1 - x)) * (1 - m*x - (x^2 - x^(m+1))/(1 - x))).
Showing 1-2 of 2 results.