A383049 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k.
1, 1, 1, 1, 2, 0, 1, 4, 1, 0, 1, 8, 5, -1, 0, 1, 16, 19, -3, 2, 0, 1, 32, 65, -1, 4, -6, 0, 1, 64, 211, 45, -10, -8, 24, 0, 1, 128, 665, 359, -116, 48, 20, -120, 0, 1, 256, 2059, 2037, -538, 340, -234, -52, 720, 0, 1, 512, 6305, 10079, -1316, 984, -1240, 1302, 72, -5040, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, 64, ... 0, 1, 5, 19, 65, 211, 665, ... 0, -1, -3, -1, 45, 359, 2037, ... 0, 2, 4, -10, -116, -538, -1316, ... 0, -6, -8, 48, 340, 984, -1148, ... 0, 24, 20, -234, -1240, -1866, 16400, ...
Links
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Crossrefs
Programs
-
PARI
a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1));
Formula
A(n,k) = Sum_{j=0..n} (j+1)^k * Stirling1(n,j).
E.g.f. of column k: Sum_{j>=0} (j+1)^k * log(1+x)^j / j!.
E.g.f. of column k: (1+x) * Sum_{j=0..k} Stirling2(k+1,j+1) * log(1+x)^j.