A222627
Poly-Cauchy numbers c_n^(-2) (for definition see Comments lines).
Original entry on oeis.org
1, 4, 5, -3, 4, -8, 20, -52, 72, 936, -17568, 238752, -3113280, 41503680, -577877760, 8470414080, -131039838720, 2139954163200, -36854615347200, 668374040678400, -12742107588403200, 254904791591116800, -5341386032640000000, 117034910701793280000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^2: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k]*(k + 1)^2, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^2); \\ Michel Marcus, Nov 14 2015
A222636
Poly-Cauchy numbers c_n^(-3).
Original entry on oeis.org
1, 8, 19, -1, -10, 48, -234, 1302, -8328, 60672, -497688, 4547448, -45846864, 505862064, -6065584128, 78555965184, -1093053332736, 16264215348480, -257730606190080, 4333624828853760, -77067187081620480, 1445257352902763520, -28505367984508416000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146.
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^3: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^3, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^3); \\ Michel Marcus, Nov 14 2015
A222748
Poly-Cauchy numbers c_n^(-4).
Original entry on oeis.org
1, 16, 65, 45, -116, 340, -1240, 5480, -28464, 169248, -1125840, 8197680, -63806016, 514314240, -4058967744, 26952984000, -37203513984, -4251686488704, 140692872720384, -3560137793538048, 84004474130786304, -1955196907518928896, 45927815909901004800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^4: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^4, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^4); \\ Michel Marcus, Nov 14 2015
A223023
Poly-Cauchy numbers c_n^(-5).
Original entry on oeis.org
1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
A383050
a(n) = Sum_{k=0..n} (k+1)^6 * Stirling1(n,k).
Original entry on oeis.org
1, 64, 665, 2037, -1316, -1148, 16400, -116032, 809592, -6059424, 49512792, -442266888, 4302605280, -45351578400, 515054655360, -6268075470720, 81309027784320, -1118525784929280, 16235659302272640, -247395991797912960, 3936073920965890560, -64988868076072657920
Offset: 0
-
a(n) = sum(k=0, n, (k+1)^6*stirling(n, k, 1));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^6*log(1+x)^k/k!)))
A383051
a(n) is the n-th term of the inverse Stirling transform of j-> (j+1)^n.
Original entry on oeis.org
1, 2, 5, -1, -116, 984, 16400, -788418, 5474016, 941115360, -51647682648, -264087895512, 244846563852864, -16953959408998080, -436871956049596800, 219647419965976413744, -20283048895473275917824, -877465277974899660349440, 545297904370739513319183360
Offset: 0
-
a(n) = sum(k=0, n, (k+1)^n*stirling(n, k, 1));
Showing 1-6 of 6 results.
Comments