A223899
Poly-Cauchy numbers of the second kind hat c_n^(-2).
Original entry on oeis.org
1, -4, 13, -51, 244, -1392, 9260, -70508, 605320, -5788008, 61021872, -703384272, 8801449344, -118828732032, 1721888828928, -26656798602240, 439110126743040, -7669109089082880, 141557837068938240, -2753560001544053760, 56299265625742848000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^2: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^2, {k, 0, n}], {n, 0, 30}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^2); \\ Michel Marcus, Nov 14 2015
A222636
Poly-Cauchy numbers c_n^(-3).
Original entry on oeis.org
1, 8, 19, -1, -10, 48, -234, 1302, -8328, 60672, -497688, 4547448, -45846864, 505862064, -6065584128, 78555965184, -1093053332736, 16264215348480, -257730606190080, 4333624828853760, -77067187081620480, 1445257352902763520, -28505367984508416000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146.
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^3: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^3, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^3); \\ Michel Marcus, Nov 14 2015
A222748
Poly-Cauchy numbers c_n^(-4).
Original entry on oeis.org
1, 16, 65, 45, -116, 340, -1240, 5480, -28464, 169248, -1125840, 8197680, -63806016, 514314240, -4058967744, 26952984000, -37203513984, -4251686488704, 140692872720384, -3560137793538048, 84004474130786304, -1955196907518928896, 45927815909901004800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^4: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^4, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^4); \\ Michel Marcus, Nov 14 2015
A223023
Poly-Cauchy numbers c_n^(-5).
Original entry on oeis.org
1, 32, 211, 359, -538, 984, -1866, 1110, 32640, -449760, 5035200, -55896960, 646005600, -7896549120, 102604234080, -1418189492640, 20828546505600, -324419255412480, 5346952977432960, -93035974518691200, 1705088403923592960, -32842738382065931520
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- M. Z. Spivey,Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
-
[&+[StirlingFirst(n,k)*(k+1)^5: k in [0..n]]: n in [0..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[n, k] (k + 1)^5, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
A383049
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 4, 1, 0, 1, 8, 5, -1, 0, 1, 16, 19, -3, 2, 0, 1, 32, 65, -1, 4, -6, 0, 1, 64, 211, 45, -10, -8, 24, 0, 1, 128, 665, 359, -116, 48, 20, -120, 0, 1, 256, 2059, 2037, -538, 340, -234, -52, 720, 0, 1, 512, 6305, 10079, -1316, 984, -1240, 1302, 72, -5040, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, ...
0, 1, 5, 19, 65, 211, 665, ...
0, -1, -3, -1, 45, 359, 2037, ...
0, 2, 4, -10, -116, -538, -1316, ...
0, -6, -8, 48, 340, 984, -1148, ...
0, 24, 20, -234, -1240, -1866, 16400, ...
-
a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1));
A224094
Denominators of poly-Cauchy numbers c_n^(2).
Original entry on oeis.org
1, 4, 36, 48, 1800, 720, 35280, 20160, 226800, 10080, 731808, 665280, 1967565600, 11211200, 129729600, 34594560, 18745927200, 28641600, 371536925760, 3990729600, 3226504881600, 4877558400, 466663317120, 550720684800, 2192556726360000, 175404538108800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
-
a(n) = denominator(sum(k=0, n,stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015
A224095
Numerators of poly-Cauchy numbers c_n^(2).
Original entry on oeis.org
1, 1, -5, 11, -1103, 1627, -374473, 1220651, -92146157, 31595747, -20000218625, 176776749931, -5607610511548471, 374753409522157, -55207553310144173, 202183428095237231, -1614396705602979083803
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
-
a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^2)); \\ Michel Marcus, Nov 15 2015
A223173
Poly-Cauchy numbers c_3^(-n).
Original entry on oeis.org
-1, -3, -1, 45, 359, 2037, 10079, 46365, 204119, 873477, 3666959, 15191085, 62342279, 254119317, 1030760639, 4165958205, 16792710839, 67557739557, 271392171119, 1089053371725, 4366669645799, 17498051254197, 70086331418399, 280627721655645
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[&+[StirlingFirst(3,k)*(k+1)^n: k in [0..3]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
-
seq(2^(n+1)-3^(n+1)+4^n, n=0..30); # Robert Israel, Jun 21 2018
-
Table[Sum[StirlingS1[3, k] (k + 1)^n, {k, 0, 3}], {n, 25}]
-
a(n) = sum(k=0, 3, stirling(3, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
A223852
Poly-Cauchy numbers c_5^(-n).
Original entry on oeis.org
-6, -8, 48, 340, 984, -1148, -34152, -254780, -1250376, -3417788, 12508248, 296104900, 3122953464, 26485493572, 201873508248, 1443404093380, 9892106472504, 65798800964932, 428187502981848, 2740792716574660, 17321987718906744, 108394003491348292
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- M. Z. Spivey, Combinatorial sums and finite differences, Discr. Math. 307 (24) (2007) 3130-3146
- Wikipedia, Stirling transform
- Index entries for linear recurrences with constant coefficients, signature (20,-155,580,-1044,720).
-
[&+[StirlingFirst(5,k)*(k+1)^n: k in [0..5]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
-
Table[Sum[StirlingS1[5, k] (k + 1)^n, {k, 0, 5}], {n, 25}]
-
a(n) = sum(k=0, 5, stirling(5, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015
Showing 1-9 of 9 results.
Comments