A223901
Poly-Cauchy numbers of the second kind hat c_n^(-3).
Original entry on oeis.org
1, -8, 35, -161, 854, -5248, 36966, -294714, 2628600, -25963392, 281529192, -3326287848, 42546905712, -585889457328, 8643254959008, -136013600978784, 2274436197944064, -40278639752011008, 753115809287568384, -14826614346669090816, 306574242780102220800
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012).
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^3: k in [0..n]]: n in [0..25]];
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^3, {k, 0, n}], {n, 0, 25}]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^3); \\ Michel Marcus, Nov 14 2015
A383049
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 4, 1, 0, 1, 8, 5, -1, 0, 1, 16, 19, -3, 2, 0, 1, 32, 65, -1, 4, -6, 0, 1, 64, 211, 45, -10, -8, 24, 0, 1, 128, 665, 359, -116, 48, 20, -120, 0, 1, 256, 2059, 2037, -538, 340, -234, -52, 720, 0, 1, 512, 6305, 10079, -1316, 984, -1240, 1302, 72, -5040, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, ...
0, 1, 5, 19, 65, 211, 665, ...
0, -1, -3, -1, 45, 359, 2037, ...
0, 2, 4, -10, -116, -538, -1316, ...
0, -6, -8, 48, 340, 984, -1148, ...
0, 24, 20, -234, -1240, -1866, 16400, ...
-
a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1));
A224096
Denominators of poly-Cauchy numbers c_n^(3).
Original entry on oeis.org
1, 8, 216, 576, 108000, 14400, 14817600, 16934400, 571536000, 127008000, 101428588800, 18441561600, 709031939616000, 12120204096000, 6678479808000, 24932991283200, 229679599076928000, 818822100096000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]
-
a(n) = denominator(sum(k=0, n, stirling(n, k, 1)/(k+1)^3)); \\ Michel Marcus, Nov 15 2015
A224097
Numerators of poly-Cauchy numbers c_n^(3).
Original entry on oeis.org
1, 1, -19, 89, -46261, 23323, -114895757, 760567603, -174446569403, 302339104957, -2125170096355349, 3788248001789087, -1573899862241140688567, 317684785943639774839, -2242333884754953400123
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]
-
a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^3)); \\ Michel Marcus, Nov 15 2015
A383052
a(n) = Sum_{k=0..n} (k+1)^3 * Stirling2(n,k).
Original entry on oeis.org
1, 8, 35, 153, 706, 3479, 18313, 102678, 610989, 3844525, 25492752, 177579961, 1295811637, 9879799744, 78525094847, 649253421173, 5573667453498, 49595062947091, 456689512735421, 4345710521536150, 42675672248378721, 431963852263306569, 4501627598926298992
Offset: 0
-
a(n) = sum(k=0, n, (k+1)^3*stirling(n, k, 2));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^3*(exp(x)-1)^k/k!)))
Showing 1-5 of 5 results.
Comments