cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A223902 Poly-Cauchy numbers of the second kind hat c_n^(-4).

Original entry on oeis.org

1, -16, 97, -531, 3148, -20940, 156680, -1310840, 12166096, -124281120, 1387313520, -16813355280, 219967479744, -3090914335104, 46439677053120, -743069262651840, 12616998421804416, -226608929801923968, 4292762009479969536, -85545808260446050560, 1789078468694176410624
Offset: 0

Views

Author

Takao Komatsu, Mar 29 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^4, {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^4); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..n} (-1)^k * (k+1)^4 * Stirling1(n,k).
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^4 * (-log(1+x))^k / k!.
E.g.f.: (1/(1+x)) * Sum_{k=0..4} Stirling2(5,k+1) * (-log(1+x))^k.
a(n) = (-1)^n * Sum_{k=0..4} k! * Stirling2(5,k+1) * |Stirling1(n+1,k+1)|. (End)

A383049 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 1, 0, 1, 8, 5, -1, 0, 1, 16, 19, -3, 2, 0, 1, 32, 65, -1, 4, -6, 0, 1, 64, 211, 45, -10, -8, 24, 0, 1, 128, 665, 359, -116, 48, 20, -120, 0, 1, 256, 2059, 2037, -538, 340, -234, -52, 720, 0, 1, 512, 6305, 10079, -1316, 984, -1240, 1302, 72, -5040, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2025

Keywords

Examples

			Square array begins:
  1,  1,  1,    1,     1,     1,     1, ...
  1,  2,  4,    8,    16,    32,    64, ...
  0,  1,  5,   19,    65,   211,   665, ...
  0, -1, -3,   -1,    45,   359,  2037, ...
  0,  2,  4,  -10,  -116,  -538, -1316, ...
  0, -6, -8,   48,   340,   984, -1148, ...
  0, 24, 20, -234, -1240, -1866, 16400, ...
		

Crossrefs

Columns k=0..6 give A019590(n+1), A302190 (for n > 0), A222627, A222636, A222748, A223023, A383050.
Main diagonal gives A383051.

Programs

  • PARI
    a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1));

Formula

A(n,k) = Sum_{j=0..n} (j+1)^k * Stirling1(n,j).
E.g.f. of column k: Sum_{j>=0} (j+1)^k * log(1+x)^j / j!.
E.g.f. of column k: (1+x) * Sum_{j=0..k} Stirling2(k+1,j+1) * log(1+x)^j.

A224098 Denominators of poly-Cauchy numbers c_n^(4).

Original entry on oeis.org

1, 16, 1296, 6912, 6480000, 2592000, 6223392000, 14224896000, 1440270720000, 320060160000, 2811600481536000, 511200087552000, 255506749760021760000, 291175783202304000, 16846598885276160000
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006233, A222748, A224094, A224096, A224099 (numerators).

Programs

  • Mathematica
    Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = denominator(sum(k=0, n,stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015

A224099 Numerators of poly-Cauchy numbers c_n^(4).

Original entry on oeis.org

1, 1, -65, 635, -1691507, 2602903, -30316306813, 405644259179, -281598937164737, 491752927006687, -38273845811539969069, 68624716189056755839, -372590717516807448774422779
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006232, A222748, A224095, A224097, A224098 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015

A383053 a(n) = Sum_{k=0..n} (k+1)^4 * Stirling2(n,k).

Original entry on oeis.org

1, 16, 97, 515, 2744, 15177, 88033, 536882, 3441439, 23151411, 163135410, 1201594675, 9232595661, 73858810120, 614045917741, 5296398334735, 47321198203496, 437310785441381, 4174403973827181, 41107555809612466, 417122543915965091, 4356601173778017487
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2025

Keywords

Comments

Stirling transform of (n+1)^4.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k+1)^4*stirling(n, k, 2));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^4*(exp(x)-1)^k/k!)))

Formula

a(n) = A362925(n+4,4).
E.g.f.: Sum_{k>=0} (k+1)^4 * (exp(x) - 1)^k / k!.
E.g.f.: exp(exp(x) - 1) * Sum_{k=0..4} Stirling2(5,k+1) * (exp(x) - 1)^k.
Showing 1-5 of 5 results.