A223904
Poly-Cauchy numbers of the second kind hat c_n^(-5).
Original entry on oeis.org
1, -32, 275, -1817, 12134, -87784, 699894, -6158058, 59566464, -630057696, 7246806720, -90151868160, 1207028135520, -17314992935040, 265048030579680, -4313510679824160, 74387763047472000, -1355291635314213120, 26016022725597866880, -524865277479851360640, 11103724030717930095360
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
-
[&+[StirlingFirst(n, k)*(-1)^k*(k+1)^5: k in [0..n]]: n in [0..23]]; // Vincenzo Librandi, Aug 03 2013
-
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^5, {k, 0, n}], {n, 0, 30}]
-
a(n) = sum(k=0, n, (-1)^k*stirling(n, k, 1)*(k+1)^5); \\ Michel Marcus, Nov 14 2015
A383049
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Stirling transform of j-> (j+1)^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 0, 1, 4, 1, 0, 1, 8, 5, -1, 0, 1, 16, 19, -3, 2, 0, 1, 32, 65, -1, 4, -6, 0, 1, 64, 211, 45, -10, -8, 24, 0, 1, 128, 665, 359, -116, 48, 20, -120, 0, 1, 256, 2059, 2037, -538, 340, -234, -52, 720, 0, 1, 512, 6305, 10079, -1316, 984, -1240, 1302, 72, -5040, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, ...
0, 1, 5, 19, 65, 211, 665, ...
0, -1, -3, -1, 45, 359, 2037, ...
0, 2, 4, -10, -116, -538, -1316, ...
0, -6, -8, 48, 340, 984, -1148, ...
0, 24, 20, -234, -1240, -1866, 16400, ...
-
a(n, k) = sum(j=0, n, (j+1)^k*stirling(n, j, 1));
A224100
Denominators of poly-Cauchy numbers c_n^(5).
Original entry on oeis.org
1, 32, 7776, 82944, 388800000, 51840000, 2613824640000, 11948912640000, 3629482214400000, 806551603200000, 77937565348177920000, 14170466426941440000, 92074412343521441433600000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, and K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu and F.-Z. Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
-
Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
-
a(n) = denominator(sum(k=0, n, stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
A224101
Numerators of poly-Cauchy numbers c_n^(5).
Original entry on oeis.org
1, 1, -211, 4241, -57453709, 29825987, -7362684132917, 198504470798947, -415989828245529323, 730328251215062341, -628191544925589374756597, 1131010588175721446183783, -80125844020238574218022657310343
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..250
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, and K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu and F.-Z. Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
-
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
-
a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
A383054
a(n) = Sum_{k=0..n} (k+1)^5 * Stirling2(n,k).
Original entry on oeis.org
1, 32, 275, 1785, 11002, 68303, 436297, 2891670, 19947717, 143327725, 1072207680, 8342947657, 67440657877, 565603592392, 4914839764895, 44191989524117, 410644596021954, 3938713285932859, 38950532224469117, 396712750010963782, 4157217331880368521
Offset: 0
-
a(n) = sum(k=0, n, (k+1)^5*stirling(n, k, 2));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^5*(exp(x)-1)^k/k!)))
Showing 1-5 of 5 results.
Comments