A383101 Number of compositions of n such that any part 1 can be m different colors where m is the largest part of the composition.
1, 1, 2, 6, 21, 77, 294, 1178, 4978, 22191, 104146, 513385, 2653003, 14349804, 81125023, 478686413, 2943737942, 18838530436, 125268429098, 864256288435, 6177766228172, 45689641883377, 349173454108407, 2754058599745239, 22393206702946457, 187501022603071090
Offset: 0
Examples
a(3) = 6 counts: (3), (2,1_a), (2,1_b), (1_a,2), (1_b,2), (1_a,1_a,1_a).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(n, p, m) option remember; binomial(n+p, n)* m^n+add(b(n-j, p+1, max(m, j)), j=2..n) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25); # Alois P. Heinz, Apr 23 2025
-
PARI
A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(m=1,N, x^m/((1-m*x-(x^2-x^m)/(1-x))*(1-m*x-(x^2-x^(m+1))/(1-x)))))} A_x(30)
Formula
G.f.: 1 + Sum_{m>0} x^m/((1 - m*x - (x^2 - x^m)/(1 - x)) * (1 - m*x - (x^2 - x^(m+1))/(1 - x))).