cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383118 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(3*k,k).

Original entry on oeis.org

1, 2, 10, 47, 238, 1232, 6499, 34715, 187198, 1016840, 5555560, 30497150, 168073195, 929348396, 5153362231, 28646281502, 159579236014, 890644144580, 4979200476088, 27878225498030, 156298588113088, 877350590047496, 4930273302851830, 27733610884176338
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Comments

Inverse binomial transform of A005809.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[3 k, k], {k, 0, n}], {n, 0, 23}]
    Table[(-1)^n HypergeometricPFQ[{1/3, 2/3, -n}, {1/2, 1}, 27/4], {n, 0, 23}]
    nmax = 23; CoefficientList[Series[(1/x) Sum[Binomial[3 k, k] (x/(1 + x))^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(3*k, k)); \\ Seiichi Manyama, Apr 17 2025

Formula

G.f.: (1/x) * Sum_{k>=0} binomial(3*k,k) * (x/(1 + x))^(k+1).
a(n) = [x^n] (1 + 2*x + 3*x^2 + x^3)^n.
The g.f. x * exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals Series_Reversion( x/((1+x)^3 - x) ). See A127897. - Seiichi Manyama, Apr 17 2025
a(n) ~ 23^(n + 1/2) / (3 * sqrt(Pi*n) * 2^(2*n+1)). - Vaclav Kotesovec, Apr 17 2025

A383121 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k).

Original entry on oeis.org

1, 0, 3, 47, 1093, 33029, 1236781, 55325416, 2879987209, 171061709417, 11418368571721, 846230146390001, 68949300160035373, 6126085419697733567, 589470974371501065845, 61068847238080533844679, 6777270943578364524130321, 802138434294752321142680145
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n k, k], {k, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(n*k,k)); \\ Michel Marcus, Apr 17 2025

Formula

a(n) = [x^n] ((1 + x)^n - x)^n.
a(n) ~ exp(n - exp(-1) - 1/2) * n^n / sqrt(2*Pi*n). - Vaclav Kotesovec, Apr 17 2025
Showing 1-2 of 2 results.