cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383137 a(n) = Sum_{k=0..n} k^3 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 12, 87, 504, 2565, 11988, 52731, 221616, 898857, 3542940, 13640319, 51490728, 191141613, 699376356, 2527001955, 9030245472, 31955015889, 112093661484, 390132432423, 1348223301720, 4629287423061, 15802106905332, 53651151578187, 181257000301584
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-3)*n*(2+6*n+n^2);

Formula

a(n) = 3^(n-3) * n * (2 + 6*n + n^2).

A383138 a(n) = Sum_{k=0..n} k^4 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 20, 189, 1320, 7785, 41148, 201285, 929232, 4100625, 17452260, 72098829, 290521080, 1146082041, 4439303820, 16923738645, 63619864992, 236206924065, 867305334708, 3152957079645, 11359168737480, 40589657212041, 143957705302620, 507079568653029
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-4)*n*(-6+20*n+12*n^2+n^3);

Formula

a(n) = 3^(n-4) * n * (-6 + 20*n + 12*n^2 + n^3).

A383139 a(n) = Sum_{k=0..n} k^5 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 36, 447, 3768, 25725, 153468, 832923, 4213296, 20179449, 92510100, 409137399, 1755881064, 7345518453, 30059956332, 120676965075, 476358203232, 1852442299377, 7108046758404, 26948581794351, 101065091563800, 375297714478701, 1381124599327836, 5040775635099147
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-5)*n*(-30+10*n+80*n^2+20*n^3+n^4);

Formula

a(n) = 3^(n-5) * n * (-30 + 10*n + 80*n^2 + 20*n^3 + n^4).

A383140 Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Examples

			f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k).
f_0(m) = 1.
f_1(m) =    m.
f_2(m) =  2*m +   m^2.
f_3(m) =  2*m + 6*m^2 + m^3.
Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   2,    6,   1;
  0,  -6,   20,  12,   1;
  0, -30,   10,  80,  20,  1;
  0,  42, -320, 270, 220, 30, 1;
  ...
		

Crossrefs

Columns k=0..1 give A000007, A179929(n-1).
Row sums give A133494.
Alternating row sums give A212846.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
    
  • Sage
    def a_row(n):
        s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..10): print(a_row(n))

Formula

T(n,k) = Sum_{j=k..n} 3^(n-j) * Stirling2(n,j) * Stirling1(j,k).
T(n,k) = [x^k] Sum_{k=0..n} 3^(n-k) * Stirling2(n,k) * FallingFactorial(x,k).
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = log(1 + (exp(3*x) - 1)/3).
Showing 1-4 of 4 results.