cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383136 a(n) = Sum_{k=0..n} k^2 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 8, 45, 216, 945, 3888, 15309, 58320, 216513, 787320, 2814669, 9920232, 34543665, 119042784, 406552365, 1377495072, 4634696961, 15496819560, 51526925037, 170465015160, 561372288561, 1841022163728, 6014703091725, 19581781196016, 63546645708225, 205608702558168
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-2)*n*(2+n);

Formula

a(n) = 3^(n-2) * n * (2 + n).

A383137 a(n) = Sum_{k=0..n} k^3 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 12, 87, 504, 2565, 11988, 52731, 221616, 898857, 3542940, 13640319, 51490728, 191141613, 699376356, 2527001955, 9030245472, 31955015889, 112093661484, 390132432423, 1348223301720, 4629287423061, 15802106905332, 53651151578187, 181257000301584
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-3)*n*(2+6*n+n^2);

Formula

a(n) = 3^(n-3) * n * (2 + 6*n + n^2).

A383139 a(n) = Sum_{k=0..n} k^5 * 2^(n-k) * binomial(n,k).

Original entry on oeis.org

0, 1, 36, 447, 3768, 25725, 153468, 832923, 4213296, 20179449, 92510100, 409137399, 1755881064, 7345518453, 30059956332, 120676965075, 476358203232, 1852442299377, 7108046758404, 26948581794351, 101065091563800, 375297714478701, 1381124599327836, 5040775635099147
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^(n-5)*n*(-30+10*n+80*n^2+20*n^3+n^4);

Formula

a(n) = 3^(n-5) * n * (-30 + 10*n + 80*n^2 + 20*n^3 + n^4).

A383140 Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2025

Keywords

Examples

			f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k).
f_0(m) = 1.
f_1(m) =    m.
f_2(m) =  2*m +   m^2.
f_3(m) =  2*m + 6*m^2 + m^3.
Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   2,    6,   1;
  0,  -6,   20,  12,   1;
  0, -30,   10,  80,  20,  1;
  0,  42, -320, 270, 220, 30, 1;
  ...
		

Crossrefs

Columns k=0..1 give A000007, A179929(n-1).
Row sums give A133494.
Alternating row sums give A212846.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
    
  • Sage
    def a_row(n):
        s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..10): print(a_row(n))

Formula

T(n,k) = Sum_{j=k..n} 3^(n-j) * Stirling2(n,j) * Stirling1(j,k).
T(n,k) = [x^k] Sum_{k=0..n} 3^(n-k) * Stirling2(n,k) * FallingFactorial(x,k).
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = log(1 + (exp(3*x) - 1)/3).
Showing 1-4 of 4 results.