cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383216 Primes p which are preceded and followed by gaps whose difference is greater than 2*log(p).

Original entry on oeis.org

113, 127, 523, 887, 907, 1087, 1129, 1151, 1277, 1327, 1361, 1669, 1693, 1931, 1951, 1973, 2203, 2311, 2333, 2477, 2557, 2971, 2999, 3163, 3251, 3299, 3469, 4049, 4297, 4327, 4523, 4547, 4783, 4861, 5119, 5147, 5237, 5351, 5381, 5531, 5557, 5591, 5749, 5779, 5981
Offset: 1

Views

Author

Alain Rocchelli, Apr 19 2025

Keywords

Comments

Primes prime(k) such that abs(prime(k-1)-2*prime(k)+prime(k+1)) > 2*log(prime(k)), where log is the natural logarithm.

Examples

			113 is a term because abs(109-2*113+127)=12 and 2*log(113)=9.4548.
127 is a term because abs(113-2*127+131)=10 and 2*log(127)=9.6884.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,782]],Abs[NextPrime[#,-1]-2#+NextPrime[#]]>2Log[#]&] (* James C. McMahon, Apr 27 2025 *)
  • PARI
    forprime(P=3, 6000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR1=min(M,Q), AR2=max(M,Q), AR0=2*log(P)); if(AR2-AR1>AR0, print1(P,", ")));

Formula

Limit_{n->oo} n / PrimePi(a(n)) = 1/e^2 (A092553).

A384603 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is less than 2.

Original entry on oeis.org

5, 23, 37, 47, 53, 67, 79, 83, 89, 131, 157, 163, 167, 173, 211, 233, 251, 257, 263, 277, 293, 337, 353, 359, 367, 373, 379, 383, 389, 409, 439, 443, 449, 479, 503, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 677, 683, 691, 701, 709, 719, 727, 733, 739, 751, 757, 787, 797
Offset: 1

Views

Author

Alain Rocchelli, Jun 04 2025

Keywords

Comments

Primes prime(k) such that Max(prime(k)-prime(k-1),prime(k+1)-prime(k)) / Min(prime(k)-prime(k-1),prime(k+1)-prime(k)) < 2.

Examples

			5 is a term because Max(5-3,7-5)/Min(5-3,7-5) = 2/2 = 1.
23 is a term because Max(23-19,29-23)/Min(23-19,29-23) = 6/4 = 1.5.
37 is a term because Max(37-31,41-37)/Min(37-31,41-37) = 6/4 = 1.5.
		

Crossrefs

Cf. A383215.

Programs

  • PARI
    forprime(P=3, 1000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M,Q)/min(M,Q), AR0=2); if(AR
    				
  • Python
    from itertools import islice
    from sympy import nextprime
    def A384603_gen(): # generator of terms
        p,q,r = 2,3,5
        while True:
            s, t = q-p, r-q
            if s<(t<<1) and t<(s<<1): yield q
            p, q, r = q, r, nextprime(r)
    A384603_list = list(islice(A384603_gen(),59)) # Chai Wah Wu, Jun 10 2025

Formula

Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/3.

A383591 Smallest prime p where the absolute difference of the gaps to the adjacent primes exceeds n*log(p).

Original entry on oeis.org

7, 113, 1327, 15683, 31397, 31397, 360653, 1349533, 1357333, 17051887, 20831323, 47326913, 436273291, 3842610773, 3842610773, 22367084959, 25056082087, 25056082087, 304599509051, 1346294310749
Offset: 1

Views

Author

Jean-Marc Rebert, May 03 2025

Keywords

Examples

			a(3) = 1327 because we have abs(1321 - 2*1327 + 1361) = 28, which is greater than 3*log(1327) ≈ 21.57, and no smaller prime meets this condition.
		

Crossrefs

Showing 1-3 of 3 results.