A383233 Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
0, 1, 11, 167, 3318, 81930, 2423208, 83582568, 3295488816, 146241365904, 7214605476480, 391735046081664, 23216763331632384, 1491431668108800768, 103230214859003968512, 7659080261784464808960, 606407304545822037952512, 51033731719180664212641792, 4549228202963725560906891264
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..355
Programs
-
Mathematica
With[{nn=20,f=Surd[1/(1-5x),5]},CoefficientList[Series[f^3 Log[f],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 20 2025 *)
-
PARI
a(n) = sum(k=1, n, k*3^(k-1)*5^(n-k)*abs(stirling(n, k, 1)));
Formula
a(n) = Sum_{k=1..n} k * 3^(k-1) * 5^(n-k) * |Stirling1(n,k)|.
a(n) = 5^(n-1) * n! * Sum_{k=0..n-1} (-1)^k * binomial(-3/5,k)/(n-k).
a(n) = (10*n-9) * a(n-1) - (5*n-7)^2 * a(n-2) for n > 1.