A383353 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n 2-colored objects are distributed into k containers of two kinds. Containers may be left empty.
1, 2, 0, 3, 4, 0, 4, 8, 6, 0, 5, 12, 22, 8, 0, 6, 16, 38, 40, 10, 0, 7, 20, 54, 92, 73, 12, 0, 8, 24, 70, 144, 196, 112, 14, 0, 9, 28, 86, 196, 354, 376, 172, 16, 0, 10, 32, 102, 248, 512, 760, 678, 240, 18, 0, 11, 36, 118, 300, 670, 1200, 1554, 1136, 335, 20, 0
Offset: 0
Examples
Array starts: 0 : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] 1 : [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...] 2 : [0, 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, ...] 3 : [0, 8, 40, 92, 144, 196, 248, 300, 352, 404, 456, ...] 4 : [0, 10, 73, 196, 354, 512, 670, 828, 986, 1144, 1302, ...] 5 : [0, 12, 112, 376, 760, 1200, 1640, 2080, 2520, 2960, 3400, ...] 6 : [0, 14, 172, 678, 1554, 2640, 3810, 4980, 6150, 7320, 8490, ...] 7 : [0, 16, 240, 1136, 2936, 5436, 8272, 11228, 14184, 17140, 20096, ...] 8 : [0, 18, 335, 1826, 5315, 10674, 17216, 24262, 31473, 38684, 45895, ...] 9 : [0, 20, 440, 2812, 9136, 19984, 34192, 50248, 67024, 84020, 101016, ...] 10 : [0, 22, 578, 4186, 15188, 36024, 65512, 100488, 138188, 176878, 215854, ...] ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (n+1)*x^n, add(b(n-i*j, min(n-i*j, i-1))*binomial(i+j, j)*x^j, j=0..n/i))) end: g:= proc(n, k) option remember; `if`(k<0, 0, g(n, k-1)+coeff(b(n$2), x, k)) end: A:= (n, k)-> add(add(g(j, h)*g(n-j, k-h), h=0..k), j=0..n): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, May 05 2025
-
Python
from sympy import binomial from sympy.utilities.iterables import partitions def calc_w( k , m): s = 0 for p in partitions( m, m=k+1): fact = 1 j = k + 1 for x in p : fact *= binomial( j, p[x]) * (x + 1) ** p[x] j -= p[x] s += fact return s def a_row( n, length=11): if n == 0 : return [ k + 1 for k in range( length) ] t = list( [0] * length) for p in partitions( n): fact = 1 s = 0 for k in p : s += p[k] fact *= calc_w( k, p[k]) if s > 0 : t[s - 1] += fact t = [0] + t for i in range( 1, length): t[i+1] += t[i] * 2 - t[i - 1] return t
Formula
A(0,k) = k + 1.
A(1,k) = 4*k.
A(2,k+1) = 6 + 16 * k.
A(n,1) = 2 + 2 * n.
A(n,n+k) = A(n,n) + k * A383352(n,n).
A(n,k) = Sum_{i=0..k} (k + 1 - i) * A383351(n,i) for 0 <= k <= n.
Sum_{k=0..n} (-1)^k*T(n-k,k) = A278710(n). - Alois P. Heinz, May 05 2025