A383359 Integers m such that m^4 is the sum of squares of two or more consecutive positive integers.
13, 295, 330, 364, 1085, 5005, 6305, 15516, 415151, 1990368, 34011252, 42016497, 79565281, 139107722, 254801664, 418093065, 667378972, 1214995500, 3609736702, 4353556896
Offset: 1
Examples
295 is a term because 295^4 = 6453^2 + 6454^2 + ... + 6628^2 + 6629^2.
Links
- Zhining Yang, Can be expressed as the fourth power of the sum of squares of consecutive positive integers, Chinese BBS.
Programs
-
Mathematica
d[m_] := Select[Divisors[6 m^4], 1 < # < Floor@ CubeRoot[3 m^4] && IntegerQ[1/6 (-3 (1 + #) + Sqrt[3 (12 m^4/# + 1 - #^2)])] &]; Do[If[Length@d[m] > 0, Print[m]], {m, 1, 10000}]
Extensions
a(11)-a(18) from Xianwen Wang, May 04 2025
a(19)-a(20) from Xianwen Wang, May 08 2025
Comments