A383484
Integers k such that there exists an integer 0
3, 33, 69, 77, 133, 161, 235, 267, 287, 321, 385, 699, 715, 1235, 1379, 1437, 1529, 1595, 1653, 1719, 2047, 2233, 2241, 2569, 2727, 2829, 3237, 3269, 3999, 4585, 4683, 4911, 5075, 5163, 5215, 5497, 5667, 5691, 7085, 7089, 7587, 7761, 7797, 7945, 8259, 9159, 9659, 10653
Offset: 1
Keywords
Examples
(2, 3) is such a pair because sigma^2(2)+sigma^2(3) = 3^2+4^2 = (2+3)^2. 33 is in the sequence. As sigma(33)^2 = 2304 and for the divisor pair (32, 72) we have m = (32 + 72 - 2*33)/2 = 19 and sigma(m) = m + k - 32 = 19 + 33 - 32 = 20 and indeed sigma(19) = 20. - _David A. Corneth_, May 04 2025
Links
- David A. Corneth, Table of n, a(n) for n = 1..2003
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
PARI
isok(k) = for (m=1, k, if (sigma(m)^2+sigma(k)^2==(m+k)^2, return(1))); \\ Michel Marcus, Apr 28 2025
-
PARI
is(n) = {my(sn = sigma(n)^2, d = divisors(sn)); for(i = 1, #d / 2, k = (d[i] + d[#d + 1 - i] - 2*n) / 2; if(denominator(k) == 1, sk = n + k - d[i]; if(k < n && sigma(k) == sk, return(1)))); 0} \\ David A. Corneth, May 04 2025
Extensions
More terms from Michel Marcus, Apr 28 2025
Comments