cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383932 Integers k such that there exists an integer 0

Original entry on oeis.org

84, 102, 160, 186, 276, 284, 330, 582, 624, 762, 868, 1164, 1210, 1372, 1404, 1446, 1488, 1540, 1988, 2156, 2640, 2716, 2898, 2924, 3556, 3708, 3882, 4074, 4228, 4536, 5382, 5564, 5610, 5802, 6018, 6282, 6368, 6392, 6486, 6612, 6748, 7140, 7452, 7494, 7960, 8358, 8432, 9222, 9834
Offset: 1

Views

Author

S. I. Dimitrov, May 15 2025

Keywords

Comments

The numbers m and k form a GM-amicable pair. See Dimitrov link.

Examples

			For k=2 we have (28, 84), (42, 102), (60, 276), (92, 160).
		

Crossrefs

Programs

  • PARI
    isok(k) = for (m=1, k-1, if (sigma(m)*sigma(k) == (m+k)^2, return(m))); \\ Michel Marcus, May 15 2025

Extensions

More terms from Michel Marcus, May 15 2025

A383964 Integers k such that there exists an integer 0

Original entry on oeis.org

168, 1320, 3792, 4968, 7176, 8184, 14364, 15240, 20076, 29904, 30672, 41952, 48312, 48768, 54264, 56856, 57960, 60144, 64296, 72996, 73344, 83328, 90552, 91512, 99828, 106020, 110952, 113280, 114156, 119016, 128592, 149292, 150024, 151272, 157608, 168588, 175584, 183240
Offset: 1

Views

Author

S. I. Dimitrov, May 16 2025

Keywords

Comments

The numbers m and k form a HM(2,1)-amicable pair (HM = harmonic mean). See Dimitrov link.

Examples

			(120, 168) is such a pair because (1/sigma(120)^2 + 1/sigma(168)^2)*(120+168)^2 = 1.
		

Crossrefs

Programs

  • PARI
    isok(k) = for(m=1, k-1, if((1/sigma(m)^2 + 1/sigma(k)^2)*(m+k)^2 == 1, return(m))); \\ Michel Marcus, May 16 2025

Extensions

a(7) and a(9)-a(25) from Michel Marcus, May 16 2025
More terms from David A. Corneth, Jun 21 2025

A383714 Integers k such that there exists an integer 0

Original entry on oeis.org

21, 231, 284, 1210, 2499, 2924, 5564, 6368, 10856, 14595, 18416, 66992, 71145, 76084, 87633, 88730
Offset: 1

Views

Author

S. I. Dimitrov, May 14 2025

Keywords

Comments

The numbers m and k form a WPM(2)-amicable pair (WPM = weighted power mean). See Dimitrov link.

Examples

			(7, 21) is such a pair because 7*sigma(7)^2 + 21*sigma(21)^2 = 7*8^2 + 21*32^2 = (7+21)^3.
		

Crossrefs

Cf. A002046 (a subsequence), A063990, A259180, A383239, A383483, A383484.

Programs

  • PARI
    isok(k)= for (m=1, k-1, if (m*sigma(m)^2 + k*sigma(k)^2 == (m+k)^3, return(m))); \\ Michel Marcus, May 15 2025

Extensions

a(3)-a(16) from Michel Marcus, May 15 2025

A385008 Integers k such that there exists an integer 0

Original entry on oeis.org

4, 284, 1210, 2924, 4892, 5564, 6368, 9962, 10425, 10856, 13130, 14595, 18416, 28130, 29631, 35584, 53296, 53912, 64617, 66992, 67268, 71145, 76084, 86812, 87633, 88730, 100695, 102364, 104805, 122390, 123152, 124155, 139815, 147610, 153176, 165596, 168730, 176336, 180848
Offset: 1

Views

Author

S. I. Dimitrov, Jun 15 2025

Keywords

Comments

The numbers m and k form a PM(2,2)-amicable pair (PM = Power Mean). See Dimitrov link.
An amicable pair forms a PM(2,2)-amicable pair, so the larger member of an amicable pair A002046 is a term of this sequence.
From David A. Corneth, Jun 29 2025: (Start)
Terms <= 2500000 are 2, 3 or 4 (mod 6). Are there any terms from a different residue class?
m > ceiling(sqrt(2*k^2 + sigma(k)^2) - 2*k).
Proof: m + sigma(k)^2 < sigma(m)^2 + sigma(k)^2 = 2*(m+k)^2.
Solving m + sigma(k)^2 < 2*(m+k)^2 gives the desired result.
Also 8*k^2 > sigma(k)^2.
Proof: sigma(k)^2 < sigma(m)^2 + sigma(k)^2 = 2*(m+k)^2 < 2*(k+k)^2 = 8*k^2.
Combining the two we have 2*k^2 < sigma(k)^2 < 8*k^2.
In a search it helps to choose an odd prime p and then classify numbers m to points (m mod p, sigma(m) mod p).
Then if sigma(m)^2 + sigma(k)^2 = 2*(m+k)^2 then sigma(m)^2 == (2*(m+k)^2 - sigma(k)^2) (mod p).
for 0 <= m <= p-1 assume the equivalence class of m (mod p) which would give an equivalence class of sigma(m) mod p and reduce the numbers to be checked. (End)

Examples

			(1, 4) is such a pair because sigma(1)^2+sigma(4)^2 = 1^2+7^2 = 2*(1+4)^2.
		

Crossrefs

Programs

  • PARI
    isok(k) = for (m=1, k-1, if (sigma(m)^2 + sigma(k)^2 == 2*(m+k)^2, return(m))); \\ Michel Marcus, Jun 15 2025

Extensions

a(17)-a(26) from Michel Marcus, Jun 15 2025
a(27)-a(39) from Michael S. Branicky, Jun 26 2025

A384255 Integers k such that there exists an integer 0

Original entry on oeis.org

2, 21, 27, 123, 175, 2133, 2187, 6093, 340917, 504309, 1594323, 1895841, 5308415, 23006577, 62188641
Offset: 1

Views

Author

S. I. Dimitrov, May 23 2025

Keywords

Comments

The most interesting question that arises here is whether there exist such pairs for which sigma(m) = sigma(k), which would imply that sigma(m)^2 = sigma(k)^2 = m^2+k^2. None have been found for m < k <= 10^8.

Examples

			(13, 21) is such a pair because sigma(13)^2 + sigma(21)^2 = 14^2 + 32^2 = 2*(13^2+21^2).
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=DivisorSigma[1,n]^2-2*n^2;lst={};Do[AppendTo[lst,f@k];If[MemberQ[lst,-f@k],Print@k],{k,10000}] (* Giorgos Kalogeropoulos, May 29 2025 *)
  • PARI
    isok(k) = for(m=1, k-1, if (sigma(m)^2 + sigma(k)^2 == 2*(m^2+k^2), return(1))); \\ Michel Marcus, May 23 2025

Extensions

a(9)-a(15) from Giorgos Kalogeropoulos, May 29 2025
Showing 1-5 of 5 results.