cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383598 Expansion of 1/( (1-x^2)^2 * (1-x^2-9*x) )^(1/3).

Original entry on oeis.org

1, 3, 19, 132, 1000, 7884, 63802, 525666, 4388518, 37010220, 314633944, 2692239012, 23161121641, 200158043223, 1736461678195, 15114944308560, 131950690469920, 1154858014686960, 10130508263000440, 89045875688728440, 784127521246844872, 6916291864328172336
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x^2)^2 * (1-x^2-9*x) )^(1/3))); // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^(n-2*k)* Binomial[-1/3, n-2*k]* Binomial[n-k,k],{k,0,Floor[n/2]}],{n,0,22}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (-9)^(n-2*k)*binomial(-1/3, n-2*k)*binomial(n-k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-1/3,n-2*k) * binomial(n-k,k).
a(n) ~ ((9 + sqrt(85))/2)^(n+1) / (Gamma(1/3) * 3^(4/3) * 85^(1/6) * n^(2/3)). - Vaclav Kotesovec, May 02 2025