cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383597 Expansion of 1/( (1-x)^2 * (1-10*x) )^(1/3).

Original entry on oeis.org

1, 4, 25, 190, 1570, 13552, 120178, 1085620, 9940345, 91962460, 857750233, 8053389142, 76026759760, 721017894640, 6864725124520, 65578937628304, 628320730656586, 6035594205744520, 58110220504754650, 560624083417180300, 5418599393597801020, 52459116546784350880
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,25]; [1] cat [n le 2 select I[n] else ((11*n-7)*Self(n-1) - 10*(n-1) *Self(n-2))/n : n in [1..30]]; // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^k *Binomial[-1/3,k]* Binomial[n, k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-1/3, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n,k).
n*a(n) = (11*n-7)*a(n-1) - 10*(n-1)*a(n-2) for n > 1.
a(n) ~ 10^(n + 2/3) / (Gamma(1/3) * 3^(4/3) * n^(2/3)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([1/3, -n], [1], -9). - Stefano Spezia, May 04 2025

A383599 Expansion of 1/( (1-x^3)^2 * (1-x^3-9*x) )^(1/3).

Original entry on oeis.org

1, 3, 18, 127, 951, 7425, 59473, 484902, 4005720, 33425587, 281152551, 2380227705, 20259341335, 173218395228, 1486747223136, 12803424371263, 110579924167533, 957494150283249, 8309596928695417, 72260720257071936, 629526082305028041, 5493357757059584986
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x^3)^2 * (1-x^3-9*x) )^(1/3))); // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^(n-3*k)* Binomial[-1/3, n-3*k]* Binomial[n-2*k,k],{k,0,Floor[n/3]}],{n,0,22}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (-9)^(n-3*k)*binomial(-1/3, n-3*k)*binomial(n-2*k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^(n-3*k) * binomial(-1/3,n-3*k) * binomial(n-2*k,k).

A383610 Expansion of 1/( (1-x^2) * (1-x^2-9*x)^2 )^(1/3).

Original entry on oeis.org

1, 6, 46, 372, 3106, 26406, 227179, 1970952, 17206552, 150940848, 1329193288, 11741662152, 103992267826, 923052335316, 8208568670644, 73116321077784, 652195543067596, 5824848557238228, 52080340709333998, 466116121318516872, 4175438344430632696
Offset: 0

Views

Author

Seiichi Manyama, May 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-9)^(n-2*k)*binomial(-2/3, n-2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-9)^(n-2*k) * binomial(-2/3,n-2*k) * binomial(n-k,k).
a(n) ~ Gamma(1/3) * (9 + sqrt(85))^(n+1) / (Pi * 3^(1/6) * 85^(1/3) * n^(1/3) * 2^(n+2)). - Vaclav Kotesovec, May 03 2025
Showing 1-3 of 3 results.