cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383642 Numbers k = x + y with x and y positive integers such that x*y is a cube.

Original entry on oeis.org

2, 6, 9, 12, 16, 20, 28, 30, 33, 34, 35, 42, 48, 54, 56, 58, 65, 70, 72, 75, 84, 86, 90, 91, 96, 105, 110, 114, 120, 124, 126, 128, 132, 133, 152, 153, 156, 160, 162, 180, 182, 189, 198, 201, 205, 209, 210, 217, 224, 236, 238, 240, 243, 246, 250, 254, 258, 264, 267
Offset: 1

Views

Author

Huaineng He, May 03 2025

Keywords

Comments

Includes all numbers of the form m*(m + 1).
2 is the only prime member.
If k >= 1 is in the sequence then so is k*m^3 where m >= 1. - David A. Corneth, May 05 2025

Examples

			k=12, 12=3+9, 3*9=3^3.
k=65, 65=25+40, 25*40=10^3.
		

Crossrefs

Supersequence of A003325.

Programs

  • Mathematica
    kMax = 300; result = {}; For[k = 2, k <= kMax, k++, For[a = 1, a < k, a++, b = k - a; product = a * b; cubeRoot = Round[product^(1 / 3)]; If[cubeRoot^3 == product, result = Append[result, k];]]]; Sort[Union[result]]
  • PARI
    isok(k) = for(i=1, k\2, if(ispower(i*(k-i), 3), return(1))); \\ Michel Marcus, May 04 2025
    
  • PARI
    is(n) = {my(maxc = sqrtnint(((n/2)^2)\1, 3)); for(i = 1, maxc, if(issquare(n^2 - 4*i^3, &sqrtD), P = (n + sqrtD)/2; if(denominator(P) == 1, return(1)))); 0} \\ David A. Corneth, May 05 2025
    
  • PARI
    upto(n) = {my(maxc = sqrtnint(((n/2)^2)\1, 3), res = List(), f); for(i = 1, maxc, f = factor(i); f[,2]*=3; d = divisors(f); forstep(j = (#d+1)\2, 1, -1, c = d[j] + d[#d + 1 - j]; if(c <= n, listput(res, c), next(2)))); Set(res)} \\ David A. Corneth, May 05 2025