cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Huaineng He

Huaineng He's wiki page.

Huaineng He has authored 3 sequences.

A384296 Square numbers whose iterative sums of digits are squares.

Original entry on oeis.org

0, 1, 4, 9, 36, 81, 100, 121, 144, 225, 324, 400, 441, 900, 1521, 2025, 2304, 2601, 3600, 8100, 10000, 10201, 10404, 11025, 12100, 12321, 14400, 22500, 32400, 40000, 40401, 44100, 62001, 69696, 90000, 101124, 103041, 121104, 123201, 149769, 152100, 173889, 178929, 199809, 202500, 230400, 251001
Offset: 1

Author

Huaineng He, May 24 2025

Keywords

Examples

			10201 = 101^2. 1+0+2+0+1 = 4, 4 = 2^2.
178929 = 423^2. 1+7+8+9+2+9 = 36, 36 = 6^2. 3+6 = 9, 9 = 3^2.
		

Crossrefs

A subsequence of A053057.

Programs

  • Maple
    filter:= proc(n) local L,i,t;
      t:= n;
      do
        if not issqr(t) then return false fi;
        if t < 10 then return true fi;
        t:= convert(convert(t,base,10),`+`)
      od
    end proc:
    select(filter, [seq(i^2,i=0..1000)]); # Robert Israel, May 25 2025
  • Mathematica
    q[n_] := AllTrue[FixedPointList[DigitSum, n], IntegerQ[Sqrt[#]] &]; Select[Range[0, 500]^2, q] (* Amiram Eldar, May 25 2025 *)

A383642 Numbers k = x + y with x and y positive integers such that x*y is a cube.

Original entry on oeis.org

2, 6, 9, 12, 16, 20, 28, 30, 33, 34, 35, 42, 48, 54, 56, 58, 65, 70, 72, 75, 84, 86, 90, 91, 96, 105, 110, 114, 120, 124, 126, 128, 132, 133, 152, 153, 156, 160, 162, 180, 182, 189, 198, 201, 205, 209, 210, 217, 224, 236, 238, 240, 243, 246, 250, 254, 258, 264, 267
Offset: 1

Author

Huaineng He, May 03 2025

Keywords

Comments

Includes all numbers of the form m*(m + 1).
2 is the only prime member.
If k >= 1 is in the sequence then so is k*m^3 where m >= 1. - David A. Corneth, May 05 2025

Examples

			k=12, 12=3+9, 3*9=3^3.
k=65, 65=25+40, 25*40=10^3.
		

Crossrefs

Supersequence of A003325.

Programs

  • Mathematica
    kMax = 300; result = {}; For[k = 2, k <= kMax, k++, For[a = 1, a < k, a++, b = k - a; product = a * b; cubeRoot = Round[product^(1 / 3)]; If[cubeRoot^3 == product, result = Append[result, k];]]]; Sort[Union[result]]
  • PARI
    isok(k) = for(i=1, k\2, if(ispower(i*(k-i), 3), return(1))); \\ Michel Marcus, May 04 2025
    
  • PARI
    is(n) = {my(maxc = sqrtnint(((n/2)^2)\1, 3)); for(i = 1, maxc, if(issquare(n^2 - 4*i^3, &sqrtD), P = (n + sqrtD)/2; if(denominator(P) == 1, return(1)))); 0} \\ David A. Corneth, May 05 2025
    
  • PARI
    upto(n) = {my(maxc = sqrtnint(((n/2)^2)\1, 3), res = List(), f); for(i = 1, maxc, f = factor(i); f[,2]*=3; d = divisors(f); forstep(j = (#d+1)\2, 1, -1, c = d[j] + d[#d + 1 - j]; if(c <= n, listput(res, c), next(2)))); Set(res)} \\ David A. Corneth, May 05 2025

A383745 Numbers k of the form x*(x+1) whose sum of digits is of the form y*(y+1).

Original entry on oeis.org

0, 2, 6, 20, 42, 110, 132, 156, 240, 420, 462, 552, 600, 930, 992, 1056, 1122, 1560, 1722, 1892, 2352, 2550, 2756, 3306, 3540, 3782, 4422, 4556, 4970, 5700, 5852, 6006, 6806, 7140, 7832, 8372, 8930, 9120, 9506, 10100, 10302, 10506, 10920, 11130, 11990, 12210, 12432
Offset: 1

Author

Huaineng He, May 08 2025

Keywords

Comments

4*a(n)+1 is the square of an odd number.
All members are congruent to 0 or 2 mod 3.
The sum of the digits of 10^s * (10^s+1) is 2 so there are infinitely many a(n) of the form 3*m + 2.
The sum of the digits of (10^t-1) * 10^t is 9*t. Given that t = z*(9*z + 1), it can be proved that there are infinitely many a(n) in the form of 3*m.

Examples

			132 is in the sequence because 132 = 11*12 and 1+3+2 = 6 = 2 *3.
2756 is in the sequence because 2756 = 52*53 and 2+7+5+6 = 20 = 4 * 5.
		

Crossrefs

Programs

  • Maple
    select(t -> issqr(1+4*convert(convert(t,base,10),`+`)),[seq(i*(i+1),i=0..120)]); # Robert Israel, Jun 09 2025
  • Mathematica
    Select[2 * Accumulate[Range[0, 150]], IntegerQ[Sqrt[4 * DigitSum[#] + 1]] &] (* Amiram Eldar, May 08 2025 *)
  • PARI
    apply(x->(x*(x+1)), select(x->issquare(4*sumdigits(x*(x+1))+1), [0..100])) \\ Michel Marcus, May 08 2025

Formula

a(n) >= digsum(a(n)).

Extensions

Offset corrected by Robert Israel, Jun 09 2025