A288907 Primes p whose distance from the next prime and from the previous prime is less than log(p).
71, 101, 103, 107, 109, 193, 197, 227, 229, 281, 311, 313, 349, 433, 439, 443, 461, 463, 503, 563, 569, 571, 593, 599, 601, 607, 613, 617, 643, 647, 653, 659, 677, 733, 739, 757, 823, 827, 857, 859, 881, 883, 941, 947, 971, 977, 1013, 1019, 1033, 1063, 1091, 1093
Offset: 1
Keywords
Examples
n = 23 is not a term because 23 - 19 > log(23) = 3.13... n = 71 is a term because log(71) = 4.71.. and 73 - log(71) < 71 < 67 + log(71).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Number Theorem
Programs
-
Maple
q:= p-> isprime(p) and is(max(nextprime(p)-p, p-prevprime(p))
Alois P. Heinz, May 12 2025 -
Mathematica
Select[Range[2, 220] // Prime, Max[ Abs[# - NextPrime[#, {-1, 1}]]] < Log[#] &] (* Giovanni Resta, Jun 19 2017 *)
-
PARI
is(n) = ispseudoprime(n) && n-precprime(n-1) < log(n) && nextprime(n+1)-n < log(n) \\ Felix Fröhlich, Jun 19 2017
-
Sage
[n for n in prime_range(3,1300) if next_prime(n)-n
Formula
Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = (1-1/e)^2 (A068996). - Alain Rocchelli, May 07 2025
Comments