A383653 Integers m such that m^4 is the sum of squares of two or more consecutive integers, positive or negative.
1, 13, 26, 33, 295, 330, 364, 1085, 5005, 5546, 5682, 6305, 6538, 15516, 415151, 1990368, 3538366, 34011252, 42016497, 79565281, 139107722, 175761059, 254801664, 418093065, 667378972, 1214995500, 3609736702, 4353556896
Offset: 1
Examples
5546 is a term because 5546^4 = (-22205)^2 + (-22204)^2 + ... + 141400^2 + 141401^2.
Links
- Zhining Yang, Can be expressed as the fourth power of the sum of squares of consecutive positive integers, Chinese BBS.
Programs
-
Mathematica
lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&]; ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&]; If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp]; AppendTo[lst,tmp]],{m,1,10^4}],m];lst
Comments