A382209 Numbers k such that 10+k and 10*k are perfect squares.
90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1
Examples
90 is a term because 10+90=100 is a square and 10*90=900 is a square. (3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
Links
- Emilio Martín, Table of n, a(n) for n = 1..100
- Wikipedia, Negative Pell equation (in German)
- Wikipedia, Pell's equation
- Index entries for linear recurrences with constant coefficients, signature (1443,-1443,1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
-
Python
from itertools import islice def A382209_gen(): # generator of terms x, y = 30, 10 while True: yield x**2//10 x, y = x*19+y*60, x*6+y*19 A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025
Formula
a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2.
a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2.
a(n+2) = 1442 * a(n+1) - a(n) + 7200.
G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - Stefano Spezia, Apr 24 2025
Comments