A383782 a(n) is the number of n-digit terms in A383781.
4, 10, 30, 147, 408, 1823, 4353, 17690, 38419, 143219, 284441, 980166, 1806038, 5813294, 10037352, 30426498, 49595776, 142437454, 220519428, 603013312, 890961094, 2329755538
Offset: 1
Crossrefs
Cf. A383781.
Programs
-
Mathematica
Unprotect[CompositeQ]; CompositeQ[1]:=True; Protect[CompositeQ]; Q[n_]:=And[AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[n],1,-2}], PrimeQ], AllTrue[FromDigits/@Table[Take[IntegerDigits[n], -i], {i,IntegerLength[ n]-1,1,-2}], CompositeQ]]; a[n_]:=Module[{p=Prime[PrimePi[10^(n-1)]+1], k=0}, While[10^(n-1)<=p<10^n-1, If[Q[p], k++]; p=NextPrime[p]]; k]; Array[a,7]
-
Python
from gmpy2 import is_prime, mpz from itertools import count, islice def agen(): olst, elst = [2, 3, 5, 7], [11, 19, 29, 31, 41, 59, 61, 71, 79, 89] yield from (len(olst), len(elst)) for n in count(1): olst2, elst2 = [], [] for o in olst: o, base = o, 10**(2*n-1) for i in range(10*base, 100*base, base): t = i + o t2 = int(str(t)[1:]) if is_prime(t) and not is_prime(t2): olst2.append(t) yield len(olst2) for e in elst: e, base = e, 10**(2*n) for i in range(10*base, 100*base, base): t = i + e t2 = int(str(t)[1:]) if is_prime(t) and not is_prime(t2): elst2.append(t) yield len(elst2) olst, elst = sorted(olst2), sorted(elst2) print(list(islice(agen(), 12))) # Michael S. Branicky, May 11 2025
Extensions
a(11)-a(19) from Michael S. Branicky, May 11 2025
a(20)-a(22) from Michael S. Branicky, May 19 2025
Comments