A383627
Expansion of 1/( Product_{k=0..2} (1 - (3*k+1) * x) )^(1/3).
Original entry on oeis.org
1, 4, 19, 100, 562, 3304, 20062, 124744, 789553, 5065444, 32840347, 214681636, 1412786872, 9348241504, 62138211112, 414627600736, 2775808278058, 18636412183336, 125436195473662, 846145250012776, 5719044971926972, 38723124875350960, 262609593669266404
Offset: 0
A383937
Expansion of 1 / ( (1-3*x) * (1-6*x) )^(2/3).
Original entry on oeis.org
1, 6, 33, 180, 990, 5508, 30978, 175824, 1005345, 5782590, 33418737, 193876092, 1128297276, 6583492080, 38498441400, 225550220544, 1323563204394, 7777806812892, 45762197971050, 269545947941160, 1589219394582996, 9378142402189176, 55385341859409948
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1 / ( (1-3*x) * (1-6*x) )^(2/3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/((1-3*x)*(1-6*x))^(2/3),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
a(n) = (-3)^n*sum(k=0, n, 2^k*binomial(-2/3, k)*binomial(-2/3, n-k));
A383936
Expansion of 1 / ( (1-6*x) * (1+3*x)^2 )^(1/3).
Original entry on oeis.org
1, 0, 9, 18, 162, 648, 4050, 20412, 117369, 639576, 3628233, 20360970, 115858512, 659144304, 3772679976, 21637128240, 124518397770, 718139766240, 4151542099770, 24045292507860, 139520453553468, 810834881716080, 4719151317787452, 27502373918849544
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1 / ( (1-6*x) * (1+3*x)^2 )^(1/3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/((1-6*x)*(1+3*x)^2)^(1/3),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
a(n) = (-3)^n*sum(k=0, n, 2^k*(-1)^(n-k)*binomial(-1/3, k)*binomial(-2/3, n-k));
Showing 1-3 of 3 results.
Comments