A016223
Expansion of 1/((1-x) * (1-4*x) * (1-7*x)).
Original entry on oeis.org
1, 12, 105, 820, 6081, 43932, 312985, 2212740, 15576561, 109385452, 767096265, 5375266260, 37649233441, 263634112572, 1845796701945, 12922008569380, 90459786608721, 633241412753292, 4432781515242025, 31029837110570100, 217210325789494401, 1520478144588475612
Offset: 0
-
a:=n->sum((7^(n+1-j)-4^(n+1-j))/3, j=0..n+1): seq(a(n), n=0..20); # Zerinvary Lajos, Jan 15 2007
-
a(n) = (1-2*4^(n+2)+7^(n+2))/18; \\ Seiichi Manyama, May 03 2025
A383628
Expansion of 1/( Product_{k=0..3} (1 - (4*k+1) * x) )^(1/4).
Original entry on oeis.org
1, 7, 59, 553, 5555, 58597, 640789, 7201383, 82659891, 964698805, 11408855809, 136374495803, 1644405320701, 19971195162107, 244004256374395, 2996243293813273, 36950056359522771, 457349452121086917, 5678884294812093329, 70710759962448700955, 882616583068179751945
Offset: 0
A383629
Expansion of 1/( Product_{k=0..4} (1 - (5*k+1) * x) )^(1/5).
Original entry on oeis.org
1, 11, 146, 2156, 34166, 569426, 9854436, 175552696, 3199485331, 59384374841, 1118636310726, 21329345218236, 410804181673996, 7978922735099756, 156074211110053016, 3071360731347145776, 60752572593061028911, 1207041376109801598421, 24073933939936470329806
Offset: 0
A383630
Expansion of 1/( Product_{k=0..6} (1 - (7*k+1) * x) )^(1/7).
Original entry on oeis.org
1, 22, 582, 17116, 540457, 17965662, 620869768, 22116614080, 807128297844, 30040462521784, 1136357972482216, 43571763517455888, 1689879290748884068, 66179996449115623096, 2613460738278752421648, 103950807765143954047840, 4160551692685459730727454
Offset: 0
A383631
Expansion of 1/( Product_{k=0..7} (1 - (8*k+1) * x) )^(1/8).
Original entry on oeis.org
1, 29, 1009, 39005, 1618849, 70741469, 3214527633, 150606953757, 7231305564225, 354221417305757, 17641204276036657, 890872808134921949, 45521466404971069921, 2349568589682742349405, 122328082368695017498321, 6416984703345086646305181, 338833672698752842286404737
Offset: 0
A383632
Expansion of 1/( Product_{k=0..8} (1 - (9*k+1) * x) )^(1/9).
Original entry on oeis.org
1, 37, 1639, 80623, 4257424, 236721412, 13688641144, 816291120808, 49895692924132, 3112177949225236, 197407027057353724, 12699858803178669148, 826900665838817386456, 54398158759680212197576, 3610650035912536155468808, 241521616482786052388206408, 16265890564063100473094045146
Offset: 0
A383633
Expansion of 1/( Product_{k=0..10} (1 - (11*k+1) * x) )^(1/11).
Original entry on oeis.org
1, 56, 3741, 277256, 22052713, 1846878936, 160878051401, 14454374710216, 1331486959280259, 125190717874655720, 11973642784650273211, 1161838196321182959096, 114133506709827074843495, 11331528323810252967417064, 1135444330405820622163425351, 114694796036872449398436891896
Offset: 0
A383935
Expansion of 1 / ( (1-3*x) * (1-6*x) )^(1/3).
Original entry on oeis.org
1, 3, 12, 54, 261, 1323, 6930, 37152, 202554, 1118286, 6233760, 35014356, 197881866, 1123990182, 6411554028, 36705925656, 210797967321, 1213895891835, 7007131607220, 40534622188830, 234931402041525, 1363961443750155, 7931187074571930, 46183636475060760
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1 / ( (1-3*x) * (1-6*x) )^(1/3); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/((1-3*x)*(1-6*x))^(1/3),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
a(n) = (-3)^n*sum(k=0, n, 2^k*binomial(-1/3, k)*binomial(-1/3, n-k));
Showing 1-8 of 8 results.
Comments