A384127 a(n) is the number of integer quintuples (a,b,c,d,e) satisfying a system of linear inequalities and congruences specified in the comments.
1, 25, 226, 1000, 3126, 7877, 17151, 33602, 60751, 103127, 166378, 257402, 384478, 557377, 787503, 1088004, 1473903, 1962229, 2572128, 3325004, 4244630, 5357279, 6691855, 8280004, 10156255, 12358131, 14926280, 17904606, 21340380, 25284381, 29791007, 34918406
Offset: 0
Examples
For n=0, the sole solution is (a,b,c,d,e) = (0,0,0,0,0) so a(0) = 1. For n=1, the a(1)=25 solutions are (-3,3,-1,0,0), (-2,0,2,-1,0), (-2,1,-1,2,-1), (-1,-2,2,1,-1), (-2,1,0,-1,1), (-1,-1,0,1,0), (0,-3,0,3,-1), (-1,-1,1,-2,2), (-1,0,-2,1,1), (0,-2,-1,0,2), (0,-1,-3,0,3), (-1,0,3,-3,0), (-1,1,0,0,-1), (0,-1,0,2,-2), (-1,2,-2,0,0), (0,-1,1,-1,0), (0,0,-1,-1,1), (1,-2,-1,1,0), (0,1,1,-2,-1), (1,-1,1,0,-2), (1,0,-1,0,-1), (2,-1,-2,-1,1), (1,2,-1,-1,-2), (2,0,0,-2,-1), (3,0,0,-1,-3).
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, arXiv:2403.15967 [math.NT], 2024.
- T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,2,-5,10,-10,5,-1).
Programs
-
Mathematica
a[n_] := Sum[Sum[Sum[ Sum[Sum[Boole[ PossibleZeroQ[ Mod[-b + 3 n + 4 q1 + 3 q2 + q3 + 2 q4, 5]]], {q4, 0, Floor[5 n - 5 b - q1 - q2 - q3]}], {q3, 0, Floor[5 n - 5 b - q1 - q2]}], {q2, 0, Floor[5 n - 5 b - q1]}], {q1, 0, Floor[5 n - 5 b]}], {b, 0, Floor[n]}]; Table[a[j], {j, 0, 50}]
Extensions
More terms from Jinyuan Wang, May 26 2025
Comments