cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384163 a(n) = Product_{k=0..n-1} (2*n+3*k).

Original entry on oeis.org

1, 2, 28, 648, 20944, 869440, 44089920, 2641533440, 182573036800, 14299419214080, 1251598943795200, 121073405444992000, 12826824167930572800, 1477015178613438464000, 183679785389526871244800, 24533610049517447983104000, 3502810763000490499317760000, 532374290389646285405913088000
Offset: 0

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Cf. A352601.

Programs

  • Magma
    [1] cat  [&*[(2*n+3*k): k in [0..n-1]]: n in [1..16]]; // Vincenzo Librandi, May 22 2025
  • Mathematica
    a[n_]:=Product[(2*n+3*k),{k,0,n-1}]; Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 22 2025 *)
  • PARI
    a(n) = prod(k=0, n-1, 2*n+3*k);
    
  • Sage
    def a(n): return 3^n*rising_factorial(2*n/3, n)
    

Formula

a(n) = 3^n * RisingFactorial(2*n/3,n).
a(n) = n! * [x^n] 1/(1 - 3*x)^(2*n/3).
a(n) = (2/5) * 3^n * n! * binomial(5*n/3,n) for n > 0.