cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384352 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/2)^(k+3)).

Original entry on oeis.org

1, 1, 32, 5392, 2676188, 2930633692, 5993325199448, 20540879727692152, 109337218761743017718, 854254522610491562826582, 9378640254148405369808277352, 139752461092050444767050922501096, 2747716352285121538660626991038190636, 69628008338488529846443753577404293410060
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(3, k)*x^k/k)))

Formula

G.f.: exp(Sum_{k>=1} A062208(k) * x^k/k).

A384353 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)*(k+3)/24 * x)^((1/2)^(k+4)).

Original entry on oeis.org

1, 1, 161, 233201, 1388333781, 23407417517205, 900363695229160325, 68584682130559722233525, 9362104205577409136806214275, 2125938144923623062958782871506275, 758178276483321320080629434392636915075, 405630344408921348237973282862682052175313075
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a262809(n, k) = sum(i=0, k*n, sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a262809(4, k)*x^k/k)))

Formula

G.f.: exp(Sum_{k>=1} A062205(k) * x^k/k).
Showing 1-2 of 2 results.