A383877 a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^3, where 0 < x < y < z < w has exactly n integer solutions, or 0 if there is no such k.
14, 13, 55, 26, 52, 63, 70, 66, 56, 104, 102, 143, 161, 91, 117, 112, 78, 236, 180, 217, 198, 192, 140, 292, 216, 259, 156, 196, 344, 168, 210, 264, 325, 252, 406, 360, 380, 402, 315, 338, 234, 308, 351, 182, 396, 408, 399, 432, 441, 312, 474, 636, 513, 273, 336, 476, 618, 666
Offset: 1
Keywords
Examples
a(3)=55, because 55^3 = 7^3 + 24^3 + 38^3 + 46^3 = 7^3 + 12^3 + 34^3 + 50^3 = 17^3 + 19^3 + 28^3 + 51^3 and no integer less than 55 has 3 solutions.
Links
- Zhining Yang, Table of n, a(n) for n = 1..1280
Programs
-
Mathematica
s=Table[{k,Length@Select[PowersRepresentations[k^3,4,3],0<#[[1]]<#[[2]]<#[[3]]<#[[4]]&]},{k,100}]; a=Table[SelectFirst[s,#[[2]]==k&],{k,9}][[All,1]]
Comments