A384452 a(n) is the sum of squares of the unitary divisors of n!.
1, 5, 50, 650, 16900, 547924, 27396200, 1746641000, 139773881000, 13460683752200, 1642203417768400, 236441876606410000, 40195119023089700000, 7723888546922636420000, 1735183690969722609168800, 444206919394766468845892000, 128820006624482275965308680000, 41737604550102658693597600532800
Offset: 1
Keywords
Links
- Project Euler, Problem 429: Sum of Squares of Unitary Divisors.
- Wikipedia, Legendre's formula.
Programs
-
Mathematica
f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 18] (* Amiram Eldar, Jun 02 2025 *)
-
PARI
row(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } \\ A077610 a(n) = norml2(row(n!)); \\ Michel Marcus, Jun 02 2025
-
Python
from sympy import nextprime def f(n,p): if n==0: return 0 return f(n//p,p) + n//p def a(n): s,p = 1, 2 while p<=n: s *= p**(f(n,p)<<1)+1 p = nextprime(p) return s print([a(n) for n in range(1, 19)])
Formula
a(n) = Sum_{d|n!} (d^2 if gcd(d,n!//d) = 1).
a(n) = Product_{p <= n, p prime} (p^(2*f(n,p)))+1 with f(n,p) = f(floor(n/p)) + floor(n/p) and f(0,p) = 0 where f(n,p) is equivalent to the Legendre formula.
a(n) = A034676(n!).