A384635 Expansion of (1+3*x+2*x^2) / (1-6*x^2-4*x^3+2*x^4).
1, 3, 8, 22, 58, 158, 420, 1136, 3036, 8180, 21920, 58952, 158168, 425032, 1140976, 3064960, 8229648, 22103600, 59355776, 159410272, 428089760, 1149677536, 3087468096, 8291603712, 22267339200, 59800139584, 160595513856, 431286986880, 1158238963072
Offset: 0
Examples
a(2)=8 because we have the walks 3-1-0, 3-1-2, 3-1-3. 3-1-4, 3-2-1, 3-2-3, 3-4-1, 3-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0,6,4,-2).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x]
Comments