A384648 Expansion of (1+2*x+x^2) / (1-x-5*x^2-2*x^3).
1, 3, 9, 26, 77, 225, 662, 1941, 5701, 16730, 49117, 144169, 423214, 1242293, 3646701, 10704594, 31422685, 92239057, 270761670, 794802325, 2333088789, 6848623754, 20103672349, 59012968697, 173228577950, 508500766133, 1492669593277, 4381630579842
Offset: 0
Examples
a(2)=9 because we have the walks 3-1-0, 3-1-2, 3-1-3, 3-1-4, 3-2-1, 3-2-3, 3-4-0, 3-4-1, 3-4-3.
Links
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (1,5,2).
Programs
-
Maple
a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <1|1|0|1|0>>^n. <<1,1,1,1,1>>)[4,1]: seq(a(n), n=0..32);
-
Mathematica
CoefficientList[Series[(1+2*x+x^2) / (1-x-5*x^2-2*x^3), {x, 0, 32}], x]
Comments