A384686 a(n) = 2^(n-4)*(5*binomial(n,5) + 6*binomial(n,4)).
0, 0, 0, 0, 6, 70, 480, 2520, 11200, 44352, 161280, 549120, 1774080, 5491200, 16400384, 47523840, 134184960, 370442240, 1002700800, 2667184128, 6985482240, 18042716160, 46022000640, 116064256000, 289696382976, 716282265600, 1755735654400, 4269382041600, 10305404928000
Offset: 0
Examples
a(4) = 6 since the words are the 6 permutations of aabb. a(6) = 480 since the words are the 90 permutations of aabbdd, the 180 permutations of aabbde, the 90 permutations of aabbee, the 60 permutations of aacccd, and the 60 permutations of aaccce.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-60,160,-240,192,-64).
Crossrefs
Cf. A384506.
Programs
-
Mathematica
A384686[n_] := 2^(n - 4)*(5*Binomial[n, 5] + 6*Binomial[n, 4]); Array[A384686, 30, 0] (* Paolo Xausa, Jun 13 2025 *) LinearRecurrence[{12,-60,160,-240,192,-64},{0,0,0,0,6,70},40] (* Harvey P. Dale, Jul 19 2025 *)
Formula
a(n) = 1/3*2^(n-7)*(n-3)*(n-2)*(n-1)*n*(n+2).
E.g.f.: x^2/2*exp(2*x)*(x^2/2 + x^3/6).
G.f.: 2*x^4*(3 - x)/(1 - 2*x)^6. - Stefano Spezia, Jun 07 2025
Comments