A385285 a(n) = Sum_{k=0..n} (binomial(n, k) mod 8).
1, 2, 4, 8, 16, 16, 32, 32, 16, 32, 24, 48, 40, 64, 40, 64, 16, 32, 40, 64, 48, 48, 88, 96, 40, 80, 88, 112, 72, 112, 112, 128, 16, 32, 40, 64, 64, 96, 120, 160, 48, 96, 72, 144, 104, 176, 160, 192, 40, 80, 104, 176, 120, 176, 176, 224, 72, 144, 160, 224, 176
Offset: 0
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..8192
- James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
- Chai Wah Wu, Sum of rows of Pascal's triangle modulo 8, blog post.
Programs
-
Maple
A385285 := n -> local k; add(modp(binomial(n, k), 8), k = 0..n): seq(A385285(n), n = 0..60);
-
Mathematica
A385285[n_] := Sum[Mod[Binomial[n, k], 8], {k, 0, n}]; Array[A385285, 100, 0] (* Paolo Xausa, Jun 26 2025 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k) % 8); \\ Michel Marcus, Jun 26 2025
-
Python
def A385285(n): if n==0: return 1 s = '0'+bin(n)[2:] n1 = n>>1 n2 = n1>>1 n3 = n2>>1 np = ~n n1111 = (n3&n2&n1&n).bit_count() n11 = (n1&n).bit_count() n101 = (n2&(~n1)&n).bit_count() n100 = (n2&(~n1)&np).bit_count() n110 = (n2&n1&np).bit_count() n10 = (n1&np).bit_count() n1100 = (n3&n2&(~n1)&np).bit_count() m11 = s.count('0110') m111 = s.endswith('0111') c = (n100<<2)+n110+(n10*(n10-1)>>1) if n11==0: c += n10+(n100<<1) elif n11==1: c += (n10-n1100<<1)+n110 else: c += n10<<1 if not (n1111 or n11 or n101): c += 1 elif not (n1111 or n11) and n101: c += 3 elif m111: c += 4 elif not (n1111 or n101 or m11) and n11: c += 2 else: c += 4 return c<
Chai Wah Wu, Jun 26 2025
Comments