A384763 Product of the Euler totients of the unitary divisors of n.
1, 1, 2, 2, 4, 4, 6, 4, 6, 16, 10, 16, 12, 36, 64, 8, 16, 36, 18, 64, 144, 100, 22, 64, 20, 144, 18, 144, 28, 4096, 30, 16, 400, 256, 576, 144, 36, 324, 576, 256, 40, 20736, 42, 400, 576, 484, 46, 256, 42, 400, 1024, 576, 52, 324, 1600, 576, 1296, 784, 58, 65536
Offset: 1
Keywords
Examples
For n = 6, a(6) = phi(1) * phi(2) * phi(3) * phi(6) = 1*1*2*2 = 4.
Programs
-
Mathematica
a[n_] := EulerPhi[n]^(2^(PrimeNu[n] - 1)); Array[a, 100] (* Amiram Eldar, Jun 09 2025 *)
-
PARI
a(n) = my(p=1); fordiv(n, d, if (gcd(d,n/d) == 1, p*=eulerphi(d))); p; \\ Michel Marcus, Jun 09 2025
-
Python
from sympy import totient, divisors, gcd def a(n): prod = 1 for d in divisors(n): if gcd(d, n//d) == 1: prod *= totient(d) return prod print([a(n) for n in range(1, 61)])
Formula
a(n) = Product_{d|n} phi(d) if gcd(n,floor(n/d)) = 1.
a(p) = p-1 for p prime.
a(p^k) = p^k-p^(k-1).
Comments