A384781 Number of values of s, 0 < s <= n - 1, such that (-s)^s == s (mod n).
0, 1, 0, 0, 1, 2, 1, 0, 1, 4, 0, 1, 1, 3, 3, 0, 0, 4, 0, 1, 2, 3, 1, 1, 3, 6, 1, 3, 1, 6, 1, 0, 3, 2, 2, 3, 3, 3, 2, 1, 1, 6, 0, 3, 5, 3, 1, 1, 3, 8, 2, 2, 2, 4, 3, 2, 1, 5, 0, 3, 3, 3, 7, 0, 5, 6, 0, 1, 3, 8, 1, 3, 3, 8, 5, 3, 4, 6, 1, 1, 4, 3, 0, 5, 2, 4, 6, 2, 4, 10, 5, 2, 3, 3, 2, 1, 4, 8, 5, 5
Offset: 1
Keywords
Programs
-
Magma
[#[s: s in [1..n-1] | Modexp((-s),s,n) eq s]: n in [1..100]];
-
Maple
a:= n-> add(`if`((-s)&^s-s mod n=0, 1, 0), s=1..n-1): seq(a(n), n=1..100); # Alois P. Heinz, Jun 09 2025
-
Mathematica
a[n_]:=Length[Select[Range[n-1],PowerMod[-#,#,n]==# &]]; Array[a,100] (* Stefano Spezia, Jun 11 2025 *)
-
PARI
a(n) = sum(s=1, n-1, Mod(-s, n)^s == s); \\ Michel Marcus, Jun 11 2025