A384816 Sum of the cubes of the indices of distinct prime factors of n.
0, 1, 8, 1, 27, 9, 64, 1, 8, 28, 125, 9, 216, 65, 35, 1, 343, 9, 512, 28, 72, 126, 729, 9, 27, 217, 8, 65, 1000, 36, 1331, 1, 133, 344, 91, 9, 1728, 513, 224, 28, 2197, 73, 2744, 126, 35, 730, 3375, 9, 64, 28, 351, 217, 4096, 9, 152, 65, 520, 1001, 4913, 36, 5832, 1332, 72, 1, 243, 134, 6859, 344, 737, 92
Offset: 1
Keywords
Programs
-
Mathematica
Table[Plus @@ (PrimePi[#[[1]]]^3 & /@ FactorInteger[n]), {n, 70}] nmax = 70; CoefficientList[Series[Sum[k^3 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
-
PARI
a(n) = my(f=factor(n)[,1]); sum(k=1, #f~, primepi(f[k])^3); \\ Michel Marcus, Jun 10 2025
Formula
If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^3), where pi = A000720.
G.f.: Sum_{k>=1} k^3 * x^prime(k) / (1 - x^prime(k)).