A384834 Number of divisors of n such that (-d)^d == -d (mod n).
1, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 6, 2, 3, 3, 3, 2, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 5, 2, 3, 3, 2, 4, 5, 2, 3, 3, 5, 2, 4, 2, 3, 3, 3, 2, 5, 2, 3, 2, 3, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[1 + #[d: d in Divisors(n) | Modexp(-d,d,n) eq n-d mod n]: n in [1..100]];
-
Maple
a:= n-> add(`if`(0=d+(-d)&^d mod n, 1, 0), d=numtheory[divisors](n)): seq(a(n), n=1..100); # Alois P. Heinz, Jul 26 2025
-
Mathematica
a[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == n-# &]; Array[a, 100] (* Amiram Eldar, Jul 24 2025 *)
-
PARI
a(n) = sumdiv(n, d, Mod(-d, n)^d == n-d); \\ Michel Marcus, Jul 26 2025
Comments