cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386557 Smallest k for which A384834(k) = n.

Original entry on oeis.org

1, 2, 10, 6, 60, 42, 210, 780, 420, 2730, 5460, 3570, 10920, 30030, 94710, 231420, 510510, 190190, 1504230, 2552550, 285285, 15120105, 1141140, 570570, 60480420, 78768690, 380570190, 577642065, 514083570
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == n - # &]; With[{t = Array[f, 10^6]}, TakeWhile[FirstPosition[t, #] & /@ Range[Max[t]] // Flatten, ! MissingQ[#] &]] (* Amiram Eldar, Jul 26 2025 *)

Extensions

a(25)-a(29) from Amiram Eldar, Jul 26 2025

A385662 Number of divisors d of n such that d^d == (-d)^d (mod n).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 4, 1, 3, 1, 4, 1, 5, 1, 4, 1, 3, 1, 6, 2, 3, 3, 4, 1, 5, 1, 5, 1, 3, 1, 6, 1, 3, 1, 6, 1, 5, 1, 4, 2, 3, 1, 8, 2, 5, 1, 4, 1, 7, 1, 6, 1, 3, 1, 8, 1, 3, 2, 6, 1, 5, 1, 4, 1, 5, 1, 9, 1, 3, 2, 4, 1, 5, 1, 8, 3, 3, 1, 8, 1, 3, 1, 6, 1, 8, 1, 4, 1, 3, 1, 10, 1, 5, 2, 6
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 03 2025

Keywords

Comments

From Robert Israel, Aug 04 2025: (Start)
If n is divisible by 4, a(n) = A000005(n/2).
If n is odd, a(n) is the number of divisors d of n such that n divides d^d.
If n = 2 * m with m odd, a(n) = A000005(m) + a(m). (End)

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq Modexp(-d,d,n)]: n in [1..100]];
    
  • Maple
    f:= proc(n) if n::odd then nops(select(d -> d &^ d mod n = 0, numtheory:-divisors(n)))
           elif n mod 4 = 0 then numtheory:-tau(n/2)
           else numtheory:-tau(n/2) + procname(n/2) fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 04 2025
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[#, #, n] == PowerMod[-#, #, n] &]; Array[a, 100] (* Amiram Eldar, Aug 04 2025 *)
  • PARI
    a(n) = sumdiv(n, d, Mod(d, n)^d == Mod(-d, n)^d); \\ Michel Marcus, Aug 04 2025

A386930 Number of divisors d of n such that (-d)^d == -d^d (mod n).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 4, 2, 5, 2, 4, 4, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 5, 4, 3, 4, 7, 2, 3, 4, 5, 2, 5, 2, 4, 6, 3, 2, 6, 3, 5, 4, 4, 2, 7, 4, 5, 4, 3, 2, 6, 2, 3, 6, 6, 4, 5, 2, 4, 4, 5, 2, 9, 2, 3, 6, 4, 4, 5, 2, 6, 5, 3, 2, 6, 4, 3, 4, 5, 2, 8, 4, 4, 4, 3, 4, 7, 2, 5, 6, 7
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(-d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PowerMod[-#, #, n] == Mod[-PowerMod[#, #, n], n] &]; Array[a, 100] (* Amiram Eldar, Aug 09 2025 *)
  • PARI
    a(n) = sumdiv(n, d, Mod(-d, n)^d == - Mod(d, n)^d); \\ Michel Marcus, Aug 09 2025
Showing 1-3 of 3 results.