cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384854 The number of divisors d of n such that (-d)^d == d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 5, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 10 2025

Keywords

Crossrefs

Programs

  • Magma
    [1+#[s: s in [1..n-1] | n mod s eq 0 and Modexp((-s), s, n) eq s]: n in [1..100]];
    
  • Maple
    a:= n-> add(`if`((-d)&^d-d mod n=0, 1, 0), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 10 2025
  • PARI
    a(n) = sumdiv(n, d, Mod(-d, n)^d == d); \\ Michel Marcus, Jun 11 2025

Formula

a(n) = 1 + number of proper divisors h of n such that (-h)^h = h (mod n).