cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268193 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of partitions of n which have k distinct parts i such that i+1 is also a part.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 3, 8, 2, 1, 8, 6, 1, 13, 7, 2, 15, 11, 4, 22, 15, 4, 1, 24, 24, 7, 1, 37, 26, 12, 2, 40, 42, 16, 3, 57, 50, 22, 6, 64, 72, 33, 6, 1, 89, 84, 46, 11, 1, 98, 122, 60, 15, 2, 135, 141, 82, 24, 3, 149, 198, 106, 32, 5, 199, 231, 144, 45, 8, 224, 309, 187, 61, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 13 2016

Keywords

Comments

T(n,k) = number of partitions of n having k singleton parts other than the largest part. Example: T(5,1) = 3 because we have [4,1'], [3,2'], [2,2,1'] (the counted singletons are marked). These partitions are connected by conjugation to those in the definition.
From Gus Wiseman, Jul 10 2025: (Start)
Also the number of integer partitions of n with k maximal subsequences of consecutive parts not decreasing by 1 (anti-runs). For example, row n = 8 counts partitions with the following anti-runs:
((8)) ((3,3),(2)) ((3),(2,2),(1))
((4,4)) ((4),(3,1)) ((3),(2),(1,1,1))
((5,3)) ((5,2),(1))
((6,2)) ((4,2),(1,1))
((7,1)) ((2,2,2),(1,1))
((4,2,2)) ((2,2),(1,1,1,1))
((6,1,1)) ((2),(1,1,1,1,1,1))
((2,2,2,2))
((3,3,1,1))
((5,1,1,1))
((4,1,1,1,1))
((3,1,1,1,1,1))
((1,1,1,1,1,1,1,1))
(End)

Examples

			T(5,1) = 3 because we have [3,2], [2,2,1], and [2,1,1,1].
T(9,2) = 4 because we have [3,2',1,1,1,1'], [3,2,2',1,1'], [3,3,2',1'], and [4,3',2'] (the i's are marked).
Triangle starts:
  1;
  2;
  2,1;
  4,1;
  4,3;
  8,2,1;
  8,6,1;
From _Gus Wiseman_, Jul 11 2025: (Start)
Row n = 8 counts the following partitions by number of singleton parts other than the largest part:
  (8)                (5,3)        (4,3,1)
  (4,4)              (6,2)        (5,2,1)
  (4,2,2)            (7,1)
  (6,1,1)            (3,3,2)
  (2,2,2,2)          (3,2,2,1)
  (3,3,1,1)          (4,2,1,1)
  (5,1,1,1)          (3,2,1,1,1)
  (2,2,2,1,1)
  (4,1,1,1,1)
  (2,2,1,1,1,1)
  (3,1,1,1,1,1)
  (2,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1)
(End)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
For distinct parts instead of anti-runs we have A116608.
Column k = 1 is A116931.
For runs instead of anti-runs we have A384881.
The strict case is A384905.
The corresponding rank statistic is A356228, non-strict version A384906.
The proper case is A385814, runs A385815.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Maple
    g := add(x^j*mul(1+t*x^i+x^(2*i)/(1-x^i), i = 1 .. j-1)/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 27)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n to 25 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0)*
          `if`(t and j=1, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, false)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 13 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, t || j > 0]*If[t && j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, False]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}] (* Delete zeros for A268193. Gus Wiseman, Jul 10 2025 *)

Formula

T(n,0) = A116931(n).
Sum_{k>=1} T(n, k) = A000041(n) (the partition numbers).
Sum_{k>=1} k*T(n,k) = A024786(n-1).
G.f.: G(t,x) = Sum_{j>=1} ((x^j/(1-x^j))*Product_{i=1..j-1} (1 + tx^i + x^{2i}/(1-x^i))).

A384890 Number of maximal anti-runs (increasing by more than 1) in the binary indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 3, 3, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 2, 2, 2, 3, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 5, 6, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2025

Keywords

Comments

First differs from A272604 at a(51) = 3, A272604(51) = 2.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Do all constant runs in this sequence have lengths 1, 2, or 3?

Examples

			The binary indices of 51 are {1,2,5,6}, with maximal anti-runs ((1),(2,5),(6)), so a(51) = 3.
		

Crossrefs

For runs instead of anti-runs we have A069010 = run-lengths of A245563 (reverse A245562).
Row-lengths of A384877, firsts A384878.
For prime indices instead of binary indices we have A384906.
A000120 counts binary indices.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Split[bpe[n],#2!=#1+1&]],{n,0,100}]

A385213 Number of maximal runs of consecutive parts increasing by 1 in the prime indices of n (with multiplicity).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 3, 3, 1, 1, 1, 5, 2, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 1, 2, 1, 2, 3, 6, 2, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 24 are {1,1,1,2}, with maximal runs ((1),(1),(1,2)), so a(24) = 3.
		

Crossrefs

Positions of first appearances are A000079.
For binary instead of prime indices we have A069010 (for anti-runs A384890).
For anti-runs instead of runs we have A384906.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Split[prix[n],#2==#1+1&]],{n,100}]

A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 1, 1, 0, 3, 4, 2, 3, 1, 1, 1, 0, 4, 5, 4, 3, 3, 1, 1, 1, 0, 5, 5, 6, 5, 3, 3, 1, 1, 1, 0, 6, 8, 7, 6, 6, 3, 3, 1, 1, 1, 0, 7, 9, 10, 8, 7, 6, 3, 3, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2025

Keywords

Examples

			The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3).
The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3).
Row n = 8 counts the following partitions:
  .  8   611  5111  41111  32111   221111  2111111  11111111
     71  521  4211  3221   311111
     62  44   332   2222   22211
     53  431  3311
         422
Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  2  2  1  1  1
  0  3  2  3  1  1  1
  0  3  4  2  3  1  1  1
  0  4  5  4  3  3  1  1  1
  0  5  5  6  5  3  3  1  1  1
  0  6  8  7  6  6  3  3  1  1  1
  0  7  9 10  8  7  6  3  3  1  1  1
  0  9 11 13 12  9  8  6  3  3  1  1  1
  0 10 14 16 15 13 10  8  6  3  3  1  1  1
  0 12 19 18 21 17 14 11  8  6  3  3  1  1  1
  0 14 21 26 23 24 19 15 11  8  6  3  3  1  1  1
  0 17 26 31 33 28 26 20 16 11  8  6  3  3  1  1  1
  0 19 32 37 40 39 31 28 21 16 11  8  6  3  3  1  1  1
  0 23 38 47 50 47 45 34 29 22 16 11  8  6  3  3  1  1  1
  0 26 45 57 61 61 54 48 36 30 22 16 11  8  6  3  3  1  1  1
  0 31 53 71 75 76 70 60 51 37 31 22 16 11  8  6  3  3  1  1  1
		

Crossrefs

Row sums are A000041, strict A000009.
Column k = 1 is A003114.
For anti-runs instead of proper anti-runs we have A268193.
The corresponding rank statistic is A356228.
For proper runs instead of proper anti-runs we have A384881.
For subsets instead of partitions we have A384893, runs A034839.
The strict case is A384905.
For runs instead of proper anti-runs we have A385815.
A007690 counts partitions with no singletons (ranks A001694), complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A047993 counts partitions with max part = length, ranks A106529.
A098859 counts Wilf partitions, complement A336866 (ranks A325992).
A116608 counts partitions by distinct parts.
A116931 counts sparse partitions, ranks A319630.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]
Showing 1-4 of 4 results.