cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384988 a(n) = Stirling2(n,2)^2 + Stirling2(n,3).

Original entry on oeis.org

0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1

Views

Author

Julian Allagan, Jun 14 2025

Keywords

Comments

Also, one third of the number of proper vertex colorings of the n-complete tripartite graph using exactly 5 interchangeable colors.
The complete 3-partite graph K(n,n,n) has 3n vertices partitioned into three sets of size n each, with edges between every pair of vertices from different sets. 3*a(n) = 0 for n < 2 because we need at least 2 vertices per partition to create 5 nonempty independent sets.

Examples

			3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
		

Crossrefs

Programs

  • Magma
    [(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
  • Mathematica
    Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]

Formula

3*a(n) = 2^(2*n - 2) + (1/2)*3^(n - 1) - 3*2^(n - 1) + 3/2 for n >= 1.
G.f.: 1/(4*(1 - 4*x)) + 1/(6*(1 - 3*x)) - 3/(2*(1 - 2*x)) + 3/(2*(1 - x)).
a(n) = A385432(n, 5) / 3 = A060867(n-1) + A000392(n).
From Stefano Spezia, Jun 14 2025: (Start)
a(n) = (6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4.
E.g.f.: (exp(x) - 1)^2*(3*exp(2*x) + 8*exp(x) - 5)/12. (End)
a(n) = A000453(n+2) -10*A000453(n). - R. J. Mathar, Jul 20 2025