A385002 Consecutive states of the linear congruential pseudo-random number generator (211*s + 1663) mod 7875 when started at s=1.
1, 1874, 3327, 2785, 6548, 5166, 4939, 4292, 1650, 3313, 7706, 5379, 2632, 5765, 5328, 7621, 3194, 6222, 7255, 4718, 4911, 6259, 7187, 6120, 1483, 7451, 6699, 5527, 2360, 3498, 7366, 4514, 1242, 3850, 2888, 4656, 7579, 2207, 2715, 7528, 7196, 144, 547, 6830
Offset: 1
References
- William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..7875
- W. E. Sharp and Carter Bays, A review of portable random number generators, Computers and Geosciences, 18, 1 (1982), 79-87.
- Index entries for sequences related to pseudo-random numbers.
- Index entries for linear recurrences with constant coefficients, order 7875.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(211*a(n-1)+1663, 7875)) end: seq(a(n), n=1..44); # Alois P. Heinz, Jun 14 2025
-
Mathematica
NestList[Mod[211*# + 1663, 7875] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)
Formula
a(n) = (211 * a(n-1) + 1663) mod 7875.
Comments