cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A383126 Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.

Original entry on oeis.org

1, 28692, 23503, 44410, 3213, 124528, 62219, 32670, 65673, 62052, 120199, 55874, 132109, 41184, 37899, 56006, 34745, 110924, 4263, 16210, 11917, 15688, 134147, 76038, 16585, 117292, 45743, 108874, 100493, 31184, 51475, 106094, 126049, 86252, 63143, 23402
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 134456.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(281*a(n-1)+28411, 134456))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[281*# + 28411, 134456] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (281*a(n-1) + 28411) mod 134456.

A383127 Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.

Original entry on oeis.org

1, 29778, 115439, 39976, 106509, 28910, 77467, 93924, 108377, 131914, 58119, 46688, 82789, 65190, 96563, 89500, 41265, 90818, 31519, 52440, 2237, 68254, 24843, 83540, 79177, 24570, 27575, 83728, 117717, 87062, 101347, 90444, 94817, 11506, 8847, 23624, 113581
Offset: 1

Views

Author

Sean A. Irvine, Jun 17 2025

Keywords

Comments

Periodic with period 139968.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(205*a(n-1)+29573, 139968))
        end:
    seq(a(n), n=1..45);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[205*# + 29573, 139968] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)

Formula

a(n) = (205*a(n-1) + 29573) mod 139968.

A385003 Consecutive states of the linear congruential pseudo-random number generator (421*s + 1663) mod 7875 when started at s=1.

Original entry on oeis.org

1, 2084, 4902, 2155, 3293, 2016, 7774, 6392, 7320, 4258, 6656, 339, 2632, 7235, 7848, 6046, 3404, 1497, 1900, 6188, 186, 1219, 2987, 7065, 7153, 4826, 1659, 7102, 6980, 2868, 4216, 4724, 5967, 1645, 1208, 6231, 2539, 7457, 6810, 2173, 2996, 2979, 3697, 6725
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 7875.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(421*a(n-1)+1663, 7875))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    NestList[Mod[421*# + 1663, 7875] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (421 * a(n-1) + 1663) mod 7875.

A385036 Consecutive states of the linear congruential pseudo-random number generator (419*s + 6173) mod 29282 when started at s=1.

Original entry on oeis.org

1, 6592, 15713, 1470, 7181, 28248, 12157, 4888, 4505, 19720, 11329, 9340, 25127, 22148, 3791, 13374, 17017, 20770, 12049, 18200, 18653, 3486, 2707, 27690, 12611, 19422, 3595, 19096, 13411, 3238, 15923, 1614, 8953, 9384, 14281, 16384, 19081, 7126, 5203, 19362
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 29282.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(419*a(n-1)+6173, 29282))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[419*# + 6173, 29282] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (419 * a(n-1) + 6173) mod 29282.

A385078 Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.

Original entry on oeis.org

1, 4008, 3563, 5428, 8133, 1976, 12241, 12762, 12359, 11620, 2901, 13544, 5035, 2658, 9059, 4246, 3213, 12722, 2491, 6036, 5423, 3298, 8481, 7154, 6079, 3786, 4979, 6130, 9885, 10658, 9037, 11784, 3023, 1864, 4779, 8, 10777, 8862, 1025, 202, 11097, 1370, 2479
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 14406.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(967*a(n-1)+3041, 14406))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[967*# + 3041, 14406] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (967 * a(n-1) + 3041) mod 14406.

A384431 Consecutive states of the linear congruential pseudo-random number generator (430*s + 2531) mod 11979 when started at s=1.

Original entry on oeis.org

1, 2961, 5987, 1456, 5703, 11105, 10039, 6861, 5927, 11593, 4257, 254, 3940, 7692, 3887, 8860, 3009, 2669, 217, 9, 6401, 11770, 8493, 926, 5404, 2325, 8024, 2899, 3285, 1559, 2077, 9195, 3311, 760, 5898, 11102, 8749, 3195, 10775, 11887, 10887, 152, 7996, 2838
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 11979.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(430*a(n-1)+2531, 11979))
        end:
    seq(a(n), n=1..44);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    NestList[Mod[430*# + 2531, 11979] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)

Formula

a(n) = (430 * a(n-1) + 2531) mod 11979.

A385037 Consecutive states of the linear congruential pseudo-random number generator (936*s + 1399) mod 6655 when started at s=1.

Original entry on oeis.org

1, 2335, 4119, 3538, 5432, 1331, 2730, 1159, 1458, 1812, 406, 2080, 5019, 753, 777, 3276, 6435, 1784, 818, 1722, 2681, 1880, 4159, 1048, 4042, 4671, 1120, 4884, 838, 477, 1986, 3550, 3354, 6238, 3732, 676, 1910, 5619, 3333, 6547, 136, 2250, 4419, 4828, 1662
Offset: 1

Views

Author

Sean A. Irvine, Jun 14 2025

Keywords

Comments

Periodic with period 6655.
Described in Numerical Recipes as a "quick and dirty" generator.

References

  • William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(936*a(n-1)+1399, 6655))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[936*# + 1399, 6655] &, 1, 50] (* Paolo Xausa, Jun 16 2025 *)

Formula

a(n) = (936 * a(n-1) + 1399) mod 6655.

A385079 Consecutive states of the linear congruential pseudo-random number generator 228*s mod (2^16+1) when started at s=1.

Original entry on oeis.org

1, 228, 51984, 55692, 49135, 61490, 60339, 60059, 61756, 55450, 59496, 64466, 17960, 31586, 58075, 2626, 8895, 61950, 34145, 51694, 55109, 47285, 32912, 32718, 54023, 61825, 5645, 41857, 40531, 351, 14491, 27098, 17866, 10154, 21317, 10538, 43332, 49146, 63998
Offset: 1

Views

Author

Sean A. Irvine, Jun 16 2025

Keywords

Comments

Periodic with period 2^16.
Attributed by Sharp and Bays to L. Afflerbach.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n,
          irem(228*a(n-1), 65537))
        end:
    seq(a(n), n=1..44);  # after Alois P. Heinz
  • Mathematica
    NestList[Mod[228*#, 65537] &, 1, 50] (* Paolo Xausa, Jun 17 2025 *)
  • PARI
    a(n) = lift(Mod(228, 65537)^(n-1)) \\ Jianing Song, Jun 17 2025

Formula

a(n) = 228 * a(n-1) mod (2^16+1).
Showing 1-8 of 8 results.